-
Notifications
You must be signed in to change notification settings - Fork 9
/
node2vec.cpp
500 lines (465 loc) · 16.3 KB
/
node2vec.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#include <algorithm>
#include <chrono>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <omp.h>
#include <queue>
#include <string.h>
#if defined(__AVX2__) || \
defined(__FMA__) // icpc, gcc and clang register __FMA__, VS does not
#define VECTORIZE 1
#define AVX_LOOP _Pragma("omp simd")
#else
#define AVX_LOOP // empty
#endif
#ifndef UINT64_C // VS can not detect the ##ULL macro
#define UINT64_C(c) (c##ULL)
#endif
#define SIGMOID_BOUND 6.0 // computation range for fast sigmoid lookup table
#define DEFAULT_ALIGN 128 // default align in bytes
#define MAX_CODE_LENGTH 64 // maximum HSM code length. sufficient for nv < int64
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uint;
typedef unsigned char byte;
int verbosity = 2; // verbosity level. 2 = report progress and tell jokes, 1 =
// report time and hsm size, 0 = errors, <0 = shut up
int n_threads = 1; // number of threads program will be using
float initial_lr = 0.025f; // initial learning rate
int n_hidden = 128; // DeepWalk parameter "d" = embedding dimensionality aka
// number of nodes in the hidden layer
int n_walks = 10; // DeepWalk parameter "\gamma" = walks per vertex
int walk_length = 80; // DeepWalk parameter "t" = length of the walk
int window_size = 10; // DeepWalk parameter "w" = window size
int n_neg_samples = 5;
float p = 1;
float q = 1;
ull step = 0; // global atomically incremented step counter
ull nv = 0, ne = 0; // number of nodes and edges
// We use CSR format for the graph matrix (unweighted).
// Adjacent nodes for vertex i are stored in
// edges[offsets[i]:offsets[i+1]]
int *offsets; // CSR index pointers for nodes.
int *edges; // CSR offsets
int *degrees; // Node degrees
int *train_order; // We shuffle the nodes for better performance
ull *edge_offsets; // Alias table pointers
int *n2v_js;
float *n2v_qs;
int *neg_js;
float *neg_qs;
float *node_cnts;
float *wVtx; // Vertex embedding, aka DeepWalk's \Phi
float *wCtx; // Context embedding
const int sigmoid_table_size = 1024; // This should fit in L1 cache
const float SIGMOID_RESOLUTION = sigmoid_table_size / (SIGMOID_BOUND * 2.0f);
float *sigmoid_table;
// http://xoroshiro.di.unimi.it/#shootout
// We use xoroshiro128+, the fastest generator available
uint64_t rng_seed[2];
void init_rng(uint64_t seed) {
for (int i = 0; i < 2; i++) {
ull z = seed += UINT64_C(0x9E3779B97F4A7C15);
z = (z ^ z >> 30) * UINT64_C(0xBF58476D1CE4E5B9);
z = (z ^ z >> 27) * UINT64_C(0x94D049BB133111EB);
rng_seed[i] = z ^ (z >> 31);
}
}
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
uint64_t lrand() {
const uint64_t s0 = rng_seed[0];
uint64_t s1 = rng_seed[1];
const uint64_t result = s0 + s1;
s1 ^= s0;
rng_seed[0] = rotl(s0, 55) ^ s1 ^ (s1 << 14);
rng_seed[1] = rotl(s1, 36);
return result;
}
static inline double drand() {
const union un {
uint64_t i;
double d;
} a = {UINT64_C(0x3FF) << 52 | lrand() >> 12};
return a.d - 1.0;
}
inline int irand(uint32_t max) {
uint32_t rnd = lrand();
return (uint64_t(rnd) * uint64_t(max)) >> 32;
}
inline int irand(uint32_t min, uint32_t max) { return irand(max - min) + min; }
inline void *
aligned_malloc(size_t size,
size_t align) { // universal aligned allocator for win & linux
#ifndef _MSC_VER
void *result;
if (posix_memalign(&result, align, size))
result = 0;
#else
void *result = _aligned_malloc(size, align);
#endif
return result;
}
inline void aligned_free(void *ptr) { // universal aligned free for win & linux
#ifdef _MSC_VER
_aligned_free(ptr);
#else
free(ptr);
#endif
}
void init_sigmoid_table() { // this shoould be called before fast_sigmoid once
sigmoid_table = static_cast<float *>(
aligned_malloc((sigmoid_table_size + 1) * sizeof(float), DEFAULT_ALIGN));
for (int k = 0; k != sigmoid_table_size; k++) {
float x = 2 * SIGMOID_BOUND * k / sigmoid_table_size - SIGMOID_BOUND;
sigmoid_table[k] = 1 / (1 + exp(-x));
}
}
float fast_sigmoid(float x) {
if (x > SIGMOID_BOUND)
return 1;
if (x < -SIGMOID_BOUND)
return 0;
int k = (x + SIGMOID_BOUND) * SIGMOID_RESOLUTION;
return sigmoid_table[k];
}
inline int sample_neighbor(int node) { // sample neighbor node from a graph
if (offsets[node] == offsets[node + 1])
return -1;
return edges[irand(offsets[node], offsets[node + 1])];
}
inline int has_edge(int from, int to) {
return binary_search(&edges[offsets[from]], &edges[offsets[from + 1]], to);
}
void shuffle(int *a, int n) { // shuffles the array a of size n
for (int i = n - 1; i >= 0; i--) {
int j = irand(i + 1);
int temp = a[j];
a[j] = a[i];
a[i] = temp;
}
}
int ArgPos(char *str, int argc, char **argv) {
for (int a = 1; a < argc; a++)
if (!strcmp(str, argv[a])) {
if (a == argc - 1) {
cout << "Argument missing for " << str << endl;
exit(1);
}
return a;
}
return -1;
}
inline void update( // update the embedding, putting w_t gradient in w_t_cache
float *w_s, float *w_t, float *w_t_cache, float lr, const int label) {
float score = 0; // score = dot(w_s, w_t)
AVX_LOOP
for (int c = 0; c < n_hidden; c++)
score += w_s[c] * w_t[c];
score = (label - fast_sigmoid(score)) * lr;
AVX_LOOP
for (int c = 0; c < n_hidden; c++)
w_t_cache[c] += score * w_s[c]; // w_t gradient
AVX_LOOP
for (int c = 0; c < n_hidden; c++)
w_s[c] += score * w_t[c]; // w_s gradient
}
void init_walker(int n, int *j, float *probs) { // assumes probs are normalized
vector<int> smaller, larger;
for (int i = 0; i < n; i++) {
if (probs[i] < 1)
smaller.push_back(i);
else
larger.push_back(i);
}
while (smaller.size() != 0 && larger.size() != 0) {
int small = smaller.back();
smaller.pop_back();
int large = larger.back();
larger.pop_back();
j[small] = large;
probs[large] += probs[small] - 1;
if (probs[large] < 1)
smaller.push_back(large);
else
larger.push_back(large);
}
}
int walker_draw(const int n, float *q, int *j) {
int kk = int(floor(drand() * n));
return drand() < q[kk] ? kk : j[kk];
}
void Train() {
ull total_steps = n_walks * nv;
const float subsample = 1e-3 * nv * n_walks * walk_length;
#pragma omp parallel num_threads(n_threads)
{
int tid = omp_get_thread_num();
const int trnd = irand(nv);
ull ncount = 0;
ull local_step = 0;
float lr = initial_lr;
int *dw_rw = static_cast<int *>(
aligned_malloc(walk_length * sizeof(int),
DEFAULT_ALIGN)); // we cache one random walk per thread
float *cache = static_cast<float *>(aligned_malloc(
n_hidden * sizeof(float),
DEFAULT_ALIGN)); // cache for updating the gradient of a node
#pragma omp barrier
while (true) {
if (ncount > 10) { // update progress every now and then
#pragma omp atomic
step += ncount;
if (step > total_steps) // note than we may train for a little longer
// than user requested
break;
if (tid == 0)
if (verbosity > 1)
cout << fixed << setprecision(6) << "\rlr " << lr << ", Progress "
<< setprecision(2) << step * 100.f / (total_steps + 1) << "%";
ncount = 0;
local_step = step;
lr =
initial_lr *
(1 - step / static_cast<float>(total_steps + 1)); // linear LR decay
if (lr < initial_lr * 0.0001)
lr = initial_lr * 0.0001;
}
dw_rw[0] = train_order[(local_step + ncount + trnd) % nv];
if (degrees[dw_rw[0]] == 0) {
ncount++;
continue;
}
ull lastedgeidx = offsets[dw_rw[0]] + irand(offsets[dw_rw[0] + 1] - offsets[dw_rw[0]]);
dw_rw[1] = edges[lastedgeidx];
for (int i = 2; i < walk_length; i++) {
int lastnode = dw_rw[i - 1];
if (degrees[lastnode] == 0) {
dw_rw[i] = -2;
break;
}
lastedgeidx =
offsets[lastnode] + walker_draw(degrees[lastnode],
&n2v_qs[edge_offsets[lastedgeidx]],
&n2v_js[edge_offsets[lastedgeidx]]);
dw_rw[i] = edges[lastedgeidx];
}
for (int dwi = 0; dwi < walk_length; dwi++) {
int b = irand(window_size); // subsample window size
if (dw_rw[dwi] < 0)
break;
size_t n1 = dw_rw[dwi];
if ((sqrt(node_cnts[n1] / subsample) + 1) * subsample / node_cnts[n1] <
drand()) // randomly subsample frequent nodes
continue;
for (int dwj = max(0, dwi - window_size + b);
dwj < min(dwi + window_size - b + 1, walk_length); dwj++) {
if (dwi == dwj)
continue;
if (dw_rw[dwj] < 0)
break;
size_t n2 = dw_rw[dwj];
memset(cache, 0, n_hidden * sizeof(float)); // clear cache
update(&wCtx[n1 * n_hidden], &wVtx[n2 * n_hidden], cache, lr, 1);
for (int i = 0; i < n_neg_samples; i++) {
size_t neg = walker_draw(nv, neg_qs, neg_js);
while (neg == n2)
neg = walker_draw(nv, neg_qs, neg_js);
update(&wCtx[neg * n_hidden], &wVtx[n2 * n_hidden], cache, lr, 0);
}
AVX_LOOP
for (int c = 0; c < n_hidden; c++)
wVtx[n2 * n_hidden + c] += cache[c];
}
}
ncount++;
}
}
}
int main(int argc, char **argv) {
int a;
string network_file, embedding_file;
ull seed = time(nullptr); // default seed is somewhat random
init_sigmoid_table();
if ((a = ArgPos(const_cast<char *>("-input"), argc, argv)) > 0)
network_file = argv[a + 1];
else {
if (verbosity > 0)
cout << "Input file not given! Aborting now.." << endl;
return 1;
}
if ((a = ArgPos(const_cast<char *>("-output"), argc, argv)) > 0)
embedding_file = argv[a + 1];
else {
if (verbosity > 0)
cout << "Output file not given! Aborting now.." << endl;
return 1;
}
if ((a = ArgPos(const_cast<char *>("-dim"), argc, argv)) > 0)
n_hidden = atoi(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-seed"), argc, argv)) > 0)
seed = atoi(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-verbose"), argc, argv)) > 0)
verbosity = atoi(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-threads"), argc, argv)) > 0)
n_threads = atoi(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-lr"), argc, argv)) > 0)
initial_lr = atof(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-p"), argc, argv)) > 0)
p = atof(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-q"), argc, argv)) > 0)
q = atof(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-nwalks"), argc, argv)) > 0)
n_walks = atoi(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-walklen"), argc, argv)) > 0)
walk_length = atoi(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-window"), argc, argv)) > 0)
window_size = atoi(argv[a + 1]);
if ((a = ArgPos(const_cast<char *>("-nsamples"), argc, argv)) > 0)
n_neg_samples = atoi(argv[a + 1]);
init_rng(seed);
ifstream embFile(network_file, ios::in | ios::binary);
if (embFile.is_open()) {
char header[] = "----";
embFile.seekg(0, ios::beg);
embFile.read(header, 4);
if (strcmp(header, "XGFS") != 0) {
if (verbosity > 0)
cout << "Invalid header!: " << header << endl;
return 1;
}
embFile.read(reinterpret_cast<char *>(&nv), sizeof(long long));
embFile.read(reinterpret_cast<char *>(&ne), sizeof(long long));
offsets = static_cast<int *>(
aligned_malloc((nv + 1) * sizeof(int32_t), DEFAULT_ALIGN));
edges =
static_cast<int *>(aligned_malloc(ne * sizeof(int32_t), DEFAULT_ALIGN));
embFile.read(reinterpret_cast<char *>(offsets), nv * sizeof(int32_t));
offsets[nv] = static_cast<int>(ne);
embFile.read(reinterpret_cast<char *>(edges), sizeof(int32_t) * ne);
if (verbosity > 0)
cout << "nv: " << nv << ", ne: " << ne << endl;
embFile.close();
} else {
return 0;
}
wVtx = static_cast<float *>(
aligned_malloc(nv * n_hidden * sizeof(float), DEFAULT_ALIGN));
for (int i = 0; i < nv * n_hidden; i++)
wVtx[i] = (drand() - 0.5) / n_hidden;
wCtx = static_cast<float *>(
aligned_malloc(nv * n_hidden * sizeof(float), DEFAULT_ALIGN));
memset(wCtx, 0, nv * n_hidden * sizeof(float));
train_order =
static_cast<int *>(aligned_malloc(nv * sizeof(int), DEFAULT_ALIGN));
for (int i = 0; i < nv; i++)
train_order[i] = i;
shuffle(train_order, nv);
degrees =
static_cast<int *>(aligned_malloc(nv * sizeof(int32_t), DEFAULT_ALIGN));
for (int i = 0; i < nv; i++)
degrees[i] = offsets[i + 1] - offsets[i];
edge_offsets =
static_cast<ull *>(aligned_malloc((ne + 1) * sizeof(ull), DEFAULT_ALIGN));
edge_offsets[0] = 0;
for (int i = 0; i < ne; i++)
edge_offsets[i + 1] =
edge_offsets[i] + offsets[edges[i] + 1] - offsets[edges[i]];
cout << "Need " << float(edge_offsets[ne]) * 8 / 1024 / 1024
<< " Mb for storing second-order degrees" << endl;
n2v_qs = static_cast<float *>(
aligned_malloc(edge_offsets[ne] * sizeof(float), DEFAULT_ALIGN));
n2v_js = static_cast<int *>(
aligned_malloc(edge_offsets[ne] * sizeof(int), DEFAULT_ALIGN));
memset(n2v_js, 0, edge_offsets[ne] * sizeof(float));
#pragma omp parallel for num_threads(n_threads)
for (int src = 0; src < nv; src++) {
for (ull dsti = offsets[src]; dsti < offsets[src + 1]; dsti++) {
int dst = edges[dsti];
double sum = 0;
int dst_degree = degrees[dst];
for (ull dstadji = offsets[dst]; dstadji < offsets[dst + 1]; dstadji++) {
int dstadj = edges[dstadji];
ull curidx = edge_offsets[dsti] + dstadji - offsets[dst];
if (dstadj == src) {
n2v_qs[curidx] = 1 / p;
sum += 1 / p;
} else {
if (has_edge(dstadj, src)) {
n2v_qs[curidx] = 1;
sum += 1;
} else {
n2v_qs[curidx] = 1 / q;
sum += 1 / q;
}
}
}
#pragma omp simd
for (ull i = edge_offsets[dsti]; i < edge_offsets[dsti] + dst_degree; i++)
n2v_qs[i] *= dst_degree / sum;
init_walker(dst_degree, &n2v_js[edge_offsets[dsti]],
&n2v_qs[edge_offsets[dsti]]);
}
}
cout << endl << "Generating a corpus for negative samples.." << endl;
neg_qs =
static_cast<float *>(aligned_malloc(nv * sizeof(float), DEFAULT_ALIGN));
neg_js = static_cast<int *>(aligned_malloc(nv * sizeof(int), DEFAULT_ALIGN));
node_cnts =
static_cast<float *>(aligned_malloc(nv * sizeof(float), DEFAULT_ALIGN));
memset(neg_qs, 0, nv * sizeof(float));
#pragma omp parallel for num_threads(n_threads)
for (int i = 0; i < nv * n_walks; i++) {
int src = train_order[i % nv];
#pragma omp atomic
neg_qs[src]++;
if (degrees[src] == 0)
continue;
int lastedgeidx = irand(offsets[src], offsets[src + 1]);
int lastnode = edges[lastedgeidx];
#pragma omp atomic
neg_qs[lastnode]++;
for (int j = 2; j < walk_length; j++) {
if (degrees[lastnode] == 0)
break;
lastedgeidx =
offsets[lastnode] + walker_draw(degrees[lastnode],
&n2v_qs[edge_offsets[lastedgeidx]],
&n2v_js[edge_offsets[lastedgeidx]]);
lastnode = edges[lastedgeidx];
#pragma omp atomic
neg_qs[lastnode]++;
}
}
for (int i = 0; i < nv; i++)
node_cnts[i] = neg_qs[i];
float sum = 0;
for (int i = 0; i < nv; i++) {
neg_qs[i] = pow(neg_qs[i], 0.75f);
sum += neg_qs[i];
}
for (int i = 0; i < nv; i++)
neg_qs[i] *= nv / sum;
init_walker(nv, neg_js, neg_qs);
cout << endl;
if (verbosity > 0)
#if VECTORIZE
cout << "Using vectorized operations" << endl;
#else
cout << "Not using vectorized operations (!)" << endl;
#endif
auto begin = chrono::steady_clock::now();
Train();
auto end = chrono::steady_clock::now();
if (verbosity > 0)
cout << endl
<< "Calculations took "
<< chrono::duration_cast<chrono::duration<float>>(end - begin).count()
<< " s to run" << endl;
ofstream output(embedding_file, ios::binary);
output.write(reinterpret_cast<char *>(wVtx), sizeof(float) * n_hidden * nv);
output.close();
}