-
Notifications
You must be signed in to change notification settings - Fork 1
/
cat_dog_classifier.py
134 lines (114 loc) · 4.76 KB
/
cat_dog_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# import the necessary packages
import os
import cv2
import imutils
import pickle
import numpy as np
from imutils import paths
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
def image_to_feature_vector(image, size=(32, 32)):
# resize the image to a fixed size, then flatten the image into
# a list of raw pixel intensities
return cv2.resize(image, size).flatten()
def extract_color_histogram(image, bins=(8, 8, 8)):
# extract a 3D color histogram from the HSV color space using
# the supplied number of `bins` per channel
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0, 1, 2], None, bins,
[0, 180, 0, 256, 0, 256])
# handle normalizing the histogram if we are using OpenCV 2.4.X
if imutils.is_cv2():
hist = cv2.normalize(hist)
# otherwise, perform "in place" normalization in OpenCV 3 (I
# personally hate the way this is done
else:
cv2.normalize(hist, hist)
# return the flattened histogram as the feature vector
return hist.flatten()
# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-d", "--dataset", required=True,
# help="path to input dataset")
# ap.add_argument("-k", "--neighbors", type=int, default=1,
# help="# of nearest neighbors for classification")
# ap.add_argument("-j", "--jobs", type=int, default=-1,
# help="# of jobs for k-NN distance (-1 uses all available cores)")
# args = vars(ap.parse_args())
# grab the list of images that we'll be describing
print("[INFO] describing images...")
imagePaths = list(paths.list_images("input"))
# initialize the raw pixel intensities matrix, the features matrix,
# and labels list
rawImages = []
features = []
labels = []
# loop over the input images
for (i, imagePath) in enumerate(imagePaths):
# load the image and extract the class label (assuming that our
# path as the format: /path/to/dataset/{class}.{image_num}.jpg
image = cv2.imread(imagePath)
label = imagePath.split(os.path.sep)[-1].split(".")[0]
# extract raw pixel intensity "features", followed by a color
# histogram to characterize the color distribution of the pixels
# in the image
pixels = image_to_feature_vector(image)
hist = extract_color_histogram(image)
# update the raw images, features, and labels matricies,
# respectively
rawImages.append(pixels)
features.append(hist)
labels.append(label)
# show an update every 1,000 images
if i > 0 and i % 100 == 0:
print("[INFO] processed {}/{}".format(i, len(imagePaths)))
# show some information on the memory consumed by the raw images
# matrix and features matrix
rawImages = np.array(rawImages)
features = np.array(features)
labels = np.array(labels)
print("[INFO] pixels matrix: {:.2f}MB".format(
rawImages.nbytes / (1024 * 1000.0)))
print("[INFO] features matrix: {:.2f}MB".format(
features.nbytes / (1024 * 1000.0)))
# partition the data into training and testing splits, using 75%
# of the data for training and the remaining 25% for testing
(trainRI, testRI, trainRL, testRL) = train_test_split(
rawImages, labels, test_size=0.25, random_state=42)
(trainFeat, testFeat, trainLabels, testLabels) = train_test_split(
features, labels, test_size=0.25, random_state=42)
# train and evaluate a k-NN classifer on the raw pixel intensities
print("[INFO] evaluating raw pixel accuracy...")
model = KNeighborsClassifier(n_neighbors=2,
n_jobs=1)
model.fit(trainRI, trainRL)
acc = model.score(testRI, testRL)
# with open('model.obj', 'wb') as fp:
# pickle.dump(model, fp)
print("[INFO] raw pixel accuracy: {:.2f}%".format(acc * 100))
# train and evaluate a k-NN classifer on the histogram
# representations
print("[INFO] evaluating histogram accuracy...")
model = KNeighborsClassifier(n_neighbors=2,
n_jobs=1)
model.fit(trainFeat, trainLabels)
# try:
# with open('model.obj', 'rb') as fp:
# model = pickle.load(fp)
# except FileNotFoundError:
# model = KNeighborsClassifier(n_neighbors=5,
# n_jobs=1)
# model.fit(trainRI, trainRL)
# acc = model.score(testRI, testRL)
# with open('model.obj', 'wb') as fp:
# pickle.dump(model, fp)
# print("[INFO] raw pixel accuracy: {:.2f}%".format(acc * 100))
#
# # train and evaluate a k-NN classifer on the histogram
# # representations
# print("[INFO] evaluating histogram accuracy...")
# model = KNeighborsClassifier(n_neighbors=5,
# n_jobs=1)
# model.fit(trainFeat, trainLabels)
acc = model.score(testFeat, testLabels)
print("[INFO] histogram accuracy: {:.2f}%".format(acc * 100))