-
Notifications
You must be signed in to change notification settings - Fork 104
/
train_funiegan.py
179 lines (157 loc) · 6.7 KB
/
train_funiegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
> Training pipeline for FUnIE-GAN (paired) model
* Paper: arxiv.org/pdf/1903.09766.pdf
> Maintainer: https://github.com/xahidbuffon
"""
# py libs
import os
import sys
import yaml
import argparse
import numpy as np
from PIL import Image
# pytorch libs
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torchvision.transforms as transforms
# local libs
from nets.commons import Weights_Normal, VGG19_PercepLoss
from nets.funiegan import GeneratorFunieGAN, DiscriminatorFunieGAN
from utils.data_utils import GetTrainingPairs, GetValImage
## get configs and training options
parser = argparse.ArgumentParser()
parser.add_argument("--cfg_file", type=str, default="configs/train_euvp.yaml")
#parser.add_argument("--cfg_file", type=str, default="configs/train_ufo.yaml")
parser.add_argument("--epoch", type=int, default=0, help="which epoch to start from")
parser.add_argument("--num_epochs", type=int, default=201, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=8, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0003, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of 1st order momentum")
parser.add_argument("--b2", type=float, default=0.99, help="adam: decay of 2nd order momentum")
args = parser.parse_args()
## training params
epoch = args.epoch
num_epochs = args.num_epochs
batch_size = args.batch_size
lr_rate, lr_b1, lr_b2 = args.lr, args.b1, args.b2
# load the data config file
with open(args.cfg_file) as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
# get info from config file
dataset_name = cfg["dataset_name"]
dataset_path = cfg["dataset_path"]
channels = cfg["chans"]
img_width = cfg["im_width"]
img_height = cfg["im_height"]
val_interval = cfg["val_interval"]
ckpt_interval = cfg["ckpt_interval"]
## create dir for model and validation data
samples_dir = os.path.join("samples/FunieGAN/", dataset_name)
checkpoint_dir = os.path.join("checkpoints/FunieGAN/", dataset_name)
os.makedirs(samples_dir, exist_ok=True)
os.makedirs(checkpoint_dir, exist_ok=True)
""" FunieGAN specifics: loss functions and patch-size
-----------------------------------------------------"""
Adv_cGAN = torch.nn.MSELoss()
L1_G = torch.nn.L1Loss() # similarity loss (l1)
L_vgg = VGG19_PercepLoss() # content loss (vgg)
lambda_1, lambda_con = 7, 3 # 7:3 (as in paper)
patch = (1, img_height//16, img_width//16) # 16x16 for 256x256
# Initialize generator and discriminator
generator = GeneratorFunieGAN()
discriminator = DiscriminatorFunieGAN()
# see if cuda is available
if torch.cuda.is_available():
generator = generator.cuda()
discriminator = discriminator.cuda()
Adv_cGAN.cuda()
L1_G = L1_G.cuda()
L_vgg = L_vgg.cuda()
Tensor = torch.cuda.FloatTensor
else:
Tensor = torch.FloatTensor
# Initialize weights or load pretrained models
if args.epoch == 0:
generator.apply(Weights_Normal)
discriminator.apply(Weights_Normal)
else:
generator.load_state_dict(torch.load("checkpoints/FunieGAN/%s/generator_%d.pth" % (dataset_name, args.epoch)))
discriminator.load_state_dict(torch.load("checkpoints/FunieGAN/%s/discriminator_%d.pth" % (dataset_name, epoch)))
print ("Loaded model from epoch %d" %(epoch))
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr_rate, betas=(lr_b1, lr_b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr_rate, betas=(lr_b1, lr_b2))
## Data pipeline
transforms_ = [
transforms.Resize((img_height, img_width), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
dataloader = DataLoader(
GetTrainingPairs(dataset_path, dataset_name, transforms_=transforms_),
batch_size = batch_size,
shuffle = True,
num_workers = 8,
)
val_dataloader = DataLoader(
GetValImage(dataset_path, dataset_name, transforms_=transforms_, sub_dir='validation'),
batch_size=4,
shuffle=True,
num_workers=1,
)
## Training pipeline
for epoch in range(epoch, num_epochs):
for i, batch in enumerate(dataloader):
# Model inputs
imgs_distorted = Variable(batch["A"].type(Tensor))
imgs_good_gt = Variable(batch["B"].type(Tensor))
# Adversarial ground truths
valid = Variable(Tensor(np.ones((imgs_distorted.size(0), *patch))), requires_grad=False)
fake = Variable(Tensor(np.zeros((imgs_distorted.size(0), *patch))), requires_grad=False)
## Train Discriminator
optimizer_D.zero_grad()
imgs_fake = generator(imgs_distorted)
pred_real = discriminator(imgs_good_gt, imgs_distorted)
loss_real = Adv_cGAN(pred_real, valid)
pred_fake = discriminator(imgs_fake, imgs_distorted)
loss_fake = Adv_cGAN(pred_fake, fake)
# Total loss: real + fake (standard PatchGAN)
loss_D = 0.5 * (loss_real + loss_fake) * 10.0 # 10x scaled for stability
loss_D.backward()
optimizer_D.step()
## Train Generator
optimizer_G.zero_grad()
imgs_fake = generator(imgs_distorted)
pred_fake = discriminator(imgs_fake, imgs_distorted)
loss_GAN = Adv_cGAN(pred_fake, valid) # GAN loss
loss_1 = L1_G(imgs_fake, imgs_good_gt) # similarity loss
loss_con = L_vgg(imgs_fake, imgs_good_gt)# content loss
# Total loss (Section 3.2.1 in the paper)
loss_G = loss_GAN + lambda_1 * loss_1 + lambda_con * loss_con
loss_G.backward()
optimizer_G.step()
## Print log
if not i%50:
sys.stdout.write("\r[Epoch %d/%d: batch %d/%d] [DLoss: %.3f, GLoss: %.3f, AdvLoss: %.3f]"
%(
epoch, num_epochs, i, len(dataloader),
loss_D.item(), loss_G.item(), loss_GAN.item(),
)
)
## If at sample interval save image
batches_done = epoch * len(dataloader) + i
if batches_done % val_interval == 0:
imgs = next(iter(val_dataloader))
imgs_val = Variable(imgs["val"].type(Tensor))
imgs_gen = generator(imgs_val)
img_sample = torch.cat((imgs_val.data, imgs_gen.data), -2)
save_image(img_sample, "samples/FunieGAN/%s/%s.png" % (dataset_name, batches_done), nrow=5, normalize=True)
## Save model checkpoints
if (epoch % ckpt_interval == 0):
torch.save(generator.state_dict(), "checkpoints/FunieGAN/%s/generator_%d.pth" % (dataset_name, epoch))
torch.save(discriminator.state_dict(), "checkpoints/FunieGAN/%s/discriminator_%d.pth" % (dataset_name, epoch))