-
Operating Systems
-
Terminal
-
Python version
-
PIP or Anaconda
-
Visual Studio Code
a. Accessibility options
b. Helpful settings
c. Interpreter settings
d. Python version check
e. Extensions
f. Internal or external Terminals
-
Using the Python REPL (Read, Evaluate, Print, Loop)
-
Basic Data types
a. Integer
b. Float
c. Strings
-
Inspecting data types
a. Type function
b. id function
c. isinstance function
d. Dir function
e. helpful dir filter
f. help function
-
Grouping data types
a. Lists
b. Dictionaries
c. Sets
d. Tuples
-
Modules
a. NumPy
b. Pandas
c. Readline
-
Numpy Review or Introduction
-
Pandas Hello world
-
Introduction
-
Excel verses Pandas Terminology and example.
a. Series (rows and columns)
b. Indexes
c. DataFrames (Work sheets)
d. macros / functions
-
Panda data types
-
Series
-
Data Frames
-
Review of Excel sheet
-
Steps to Reproduce with pandas.
-
Saving the data in different forms.
-
Check output in Excel.
-
Reading Simple created XLS into Pandas
-
Getting started with Exploratory Data Analysis (EDA)
a. Head
b. Tail
c. Describe
d. Info
e. Shape.
f. index
g. columns
h. data (numpy array)
-
Getting data set Penguins.
-
Exploring data set
-
clean up data functions
a. drop
b. Rename
c. Type change
d. Filter
-
Sorting
-
filter
-
creating new columns
-
Group by
-
Getting GapMinder.
-
Basic EDA and Cleanup.
-
Join
-
Merge
-
Data transformation
-
Mutation
-
Definitions, description, and components.
a. Bars
b. X-axis
c. Y-axis
d. Labels
e. Title
-
Use cases for bar charts.
-
Load data
-
Explore and choose the data
-
Create a Bar plot
-
Hands on Exercise
a. Participants create and review bar plots with Seaborn and an Accessible library
-
Definitions, description and components.
a. Bins
b. Bars
c. X-axis
d. Y-axis
e. Frequency
-
Use case for Histograms.
-
Load data
-
Explore and choose the data
-
Create a Histogram
-
Hands on Exercise
a. Participants create and explore Histograms with Seaborn and an Accessible library
-
Definitions and Components:
a. Lines
b. x-axis
c. y-axis
d. Markers
e. title.
-
Use cases for line plots.
-
EDA and Setup of data.
-
Create Line plot
-
Hands on Exercise
a. Participants create and explore Line plots with Seaborn and an Accessible library
-
Definitions, description, and Components
a. points
b. axis's
c. labels
d. title
-
Use cases for scatter plots.
-
EDA and Setup of data.
-
Create Scatter plot
-
Hands-on Exercise:
a. Participants create and explore scatter plots with Seaborn and an Accessible library
-
Definitions, description, and Components:
a. Box:
b. Median Line
c. Whiskers
d. Outliers
e. Minimum
f. Maximum
g. Quartiles
h. Range
i. Notches
j. Axes both X and Y
k. Title and Labels
-
Use cases for box plots.
-
EDA and Setup of data.
-
Create Box plot
-
Hands-on Exercise:
a. Participants create and explore box plots with Seaborn and an Accessible library
-
Definitions, description, and Components:
a. Data matrix
b. Axis both X and Y.
c. Color Scale
d. Titles and lables
e. Dendrograms
f. Ticks and grid lines
g. Figure background
-
Use cases for Heat Maps
-
EDA and Setup of data.
-
Create Heat map
-
Hands-on Exercise:
a. Participants create and explore Heat map with Seaborn and an Accessible library
-
Definitions and Significance:
a. Understanding Anscombe's Quartet.
b. Importance in illustrating the importance of data visualization.
-
Plotting Anscombe's Quartet.
-
EDA and selecting data
-
Picking the right Plot