-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
315 lines (269 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os, os.path as osp
from copy import copy
import torch, time, argparse
import torch.distributed as dist
from model import *
from loss import OPENOCC_LOSS
from utils.build_scheduler import create_scheduler
from utils.average_meter import AverageMeter
from utils.metric_util import MeanIoU
from utils.load_save_util import revise_ckpt, revise_ckpt_2
from utils.dtype_lut import dtypeLut
import mmcv
from mmcv import Config
from mmcv.runner import build_optimizer
from mmseg.utils import get_root_logger
from mmseg.models import build_segmentor
import warnings
warnings.filterwarnings("ignore")
def pass_print(*args, **kwargs):
pass
def main(local_rank, args):
# global settings
if args.hfai:
os.environ['HFAI'] = 'true'
torch.backends.cudnn.benchmark = True
# load config
cfg = Config.fromfile(args.py_config)
cfg.work_dir = args.work_dir
cfg.distributed = args.dist
# init DDP
if cfg.distributed:
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "20506")
hosts = int(os.environ.get("WORLD_SIZE", 1)) # number of nodes
rank = int(os.environ.get("RANK", 0)) # node id
gpus = torch.cuda.device_count() # gpus per node
print(f"tcp://{ip}:{port}")
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}",
world_size=hosts * gpus, rank=rank * gpus + local_rank
)
world_size = dist.get_world_size()
cfg.gpu_ids = range(world_size)
torch.cuda.set_device(local_rank)
# disable print from none-0 processes
if dist.get_rank() != 0:
import builtins
builtins.print = pass_print
else:
rank = 0
cfg.gpu_ids = [0]
# dump configuration
if local_rank == 0 and rank == 0:
os.makedirs(args.work_dir, exist_ok=True)
cfg.dump(osp.join(args.work_dir, osp.basename(args.py_config)))
# configure logging
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(args.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level='INFO')
# build model
my_model = build_segmentor(cfg.model)
my_model.init_weights()
if cfg.get('syncBN', False):
nn.SyncBatchNorm.convert_sync_batchnorm(my_model)
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
logger.info(f'Number of params: {n_parameters}')
if cfg.distributed:
find_unused_parameters = cfg.get('find_unused_parameters', False)
ddp_model_module = torch.nn.parallel.DistributedDataParallel
my_model = ddp_model_module(
my_model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
my_model = my_model.cuda()
logger.info('done ddp model')
# generate datasets
if 'train_wrapper' in cfg:
from dataset import get_dataloader
train_dataset_loader, val_dataset_loader = \
get_dataloader(
train_wrapper=cfg.train_wrapper,
val_wrapper=cfg.val_wrapper,
train_loader=cfg.train_loader,
val_loader=cfg.val_loader,
dist=cfg.distributed)
elif 'data' in cfg:
# for mmdet_plugin nuscenes_occ dataset
from dataset import get_dataloader_occ
train_dataset_loader, val_dataset_loader = get_dataloader_occ(cfg=cfg)
# get metric calculator
if cfg.get('nuScenes_label_name', None):
label_str = cfg.nuScenes_label_name
else:
label_str = train_dataset_loader.dataset.loader.nuScenes_label_name
metric_label = cfg.unique_label
metric_str = [label_str[x] for x in metric_label]
metric_ignore_label = cfg.metric_ignore_label
CalMeanIou = MeanIoU(metric_label, metric_ignore_label, metric_str, 'vox')
# get optimizer, loss, scheduler
optimizer = build_optimizer(my_model, cfg.optimizer)
multi_loss_func = OPENOCC_LOSS.build(cfg.loss)
cfg.scheduler.update(
{'num_steps': len(train_dataset_loader) * cfg.max_num_epochs})
scheduler = create_scheduler(cfg.scheduler, optimizer)
# resume and load
epoch = 0
best_val_miou_pts = 0
global_iter = 0
cfg.resume_from = ''
if osp.exists(osp.join(args.work_dir, 'latest.pth')):
cfg.resume_from = osp.join(args.work_dir, 'latest.pth')
if args.resume_from:
cfg.resume_from = args.resume_from
print('resume from: ', cfg.resume_from)
print('work dir: ', args.work_dir)
if cfg.resume_from and osp.exists(cfg.resume_from):
map_location = 'cpu'
ckpt = torch.load(cfg.resume_from, map_location=map_location)
print(my_model.load_state_dict(revise_ckpt(ckpt['state_dict']), strict=False))
optimizer.load_state_dict(ckpt['optimizer'])
scheduler.load_state_dict(ckpt['scheduler'])
epoch = ckpt['epoch']
if 'best_val_miou_pts' in ckpt:
best_val_miou_pts = ckpt['best_val_miou_pts']
global_iter = ckpt['global_iter']
print(f'successfully resumed from epoch {epoch}')
elif cfg.load_from:
ckpt = torch.load(cfg.load_from, map_location='cpu')
if 'state_dict' in ckpt:
state_dict = ckpt['state_dict']
else:
state_dict = ckpt
state_dict = revise_ckpt(state_dict)
try:
print(my_model.load_state_dict(state_dict, strict=False))
except:
print('removing img_neck.lateral_convs and img_neck.fpn_convs')
state_dict = revise_ckpt_2(state_dict)
print(my_model.load_state_dict(state_dict, strict=False))
# training
print_freq = cfg.print_freq
max_num_epochs = cfg.max_num_epochs
lossMeter = AverageMeter()
while epoch < max_num_epochs:
my_model.train()
if hasattr(train_dataset_loader.sampler, 'set_epoch'):
train_dataset_loader.sampler.set_epoch(epoch)
lossMeter.reset()
data_time_s = time.time()
time_s = time.time()
for i_iter, inputs in enumerate(train_dataset_loader):
if cfg.data.convert_inputs:
from dataset import convert_inputs
inputs = convert_inputs(inputs=inputs, dataset_type=cfg.data.train.type)
new_inputs = copy(inputs)
for new_name, old_name, dtype, device in cfg.input_convertion:
item = inputs[old_name]
if dtype is not None:
item = item.to(dtypeLut[dtype])
if device is not None:
item = item.to(device)
new_inputs.update({new_name: item})
data_time_e = time.time()
# forward + backward + optimize
model_inputs = {}
for model_arg_name, input_name in cfg.model_inputs.items():
model_inputs.update({model_arg_name: new_inputs[input_name]})
model_outputs = my_model(**model_inputs)
new_inputs.update(model_outputs)
loss_inputs = {}
for loss_arg_name, input_name in cfg.loss_inputs.items():
loss_inputs.update({loss_arg_name: new_inputs[input_name]})
loss, _ = multi_loss_func(loss_inputs)
optimizer.zero_grad()
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(my_model.parameters(), cfg.grad_max_norm)
optimizer.step()
lossMeter.update(loss.detach().cpu().item())
scheduler.step_update(global_iter)
time_e = time.time()
global_iter += 1
if i_iter % print_freq == 0 and local_rank == 0 and rank == 0:
lr = optimizer.param_groups[0]['lr']
logger.info('[TRAIN] Epoch %d Iter %5d/%d: Loss: %.3f (%.3f), grad_norm: %.1f, lr: %.7f, time: %.3f (%.3f)'%(
epoch, i_iter, len(train_dataset_loader),
lossMeter.val, lossMeter.avg, grad_norm, lr,
time_e - time_s, data_time_e - data_time_s))
data_time_s = time.time()
time_s = time.time()
# save checkpoint
if local_rank == 0 and rank == 0:
dict_to_save = {
'state_dict': my_model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch + 1,
'global_iter': global_iter,
'best_val_miou_pts': best_val_miou_pts,
}
save_file_name = os.path.join(os.path.abspath(args.work_dir), f'epoch_{epoch+1}.pth')
torch.save(dict_to_save, save_file_name)
dst_file = osp.join(args.work_dir, 'latest.pth')
mmcv.symlink(save_file_name, dst_file)
# eval
my_model.eval()
lossMeter.reset()
CalMeanIou.reset()
with torch.no_grad():
for i_iter_val, inputs in enumerate(val_dataset_loader):
if cfg.data.convert_inputs:
from dataset import convert_inputs
inputs = convert_inputs(inputs=inputs, dataset_type=cfg.data.train.type)
new_inputs = copy(inputs)
for new_name, old_name, dtype, device in cfg.input_convertion:
item = inputs[old_name]
if dtype is not None:
item = item.to(dtypeLut[dtype])
if device is not None:
item = item.to(device)
new_inputs.update({new_name: item})
data_time_e = time.time()
# forward + backward + optimize
model_inputs = {}
for model_arg_name, input_name in cfg.model_inputs.items():
model_inputs.update({model_arg_name: new_inputs[input_name]})
model_outputs = my_model(**model_inputs)
new_inputs.update(model_outputs)
loss_inputs = {}
for loss_arg_name, input_name in cfg.loss_inputs.items():
loss_inputs.update({loss_arg_name: new_inputs[input_name]})
loss, _ = multi_loss_func(loss_inputs)
predict_labels = new_inputs['outputs_vox']
val_labs = new_inputs['voxel_labels']
predict_labels = predict_labels.squeeze(-1).squeeze(-1)
predict_labels = torch.argmax(predict_labels, dim=1) # bs, n
predict_labels = predict_labels.detach().cpu()
val_labs = val_labs.squeeze(-1).cpu()
for count in range(len(predict_labels)):
CalMeanIou._after_step(predict_labels[count], val_labs[count])
lossMeter.update(loss.detach().cpu().item())
if i_iter_val % print_freq == 0 and local_rank == 0 and rank == 0:
logger.info('[EVAL] Epoch %d Iter %5d: Loss: %.3f (%.3f)'%(
epoch, i_iter_val, lossMeter.val, lossMeter.avg))
val_miou_pts = CalMeanIou._after_epoch()
if best_val_miou_pts < val_miou_pts:
best_val_miou_pts = val_miou_pts
logger.info('Current val miou pts is %.3f while the best val miou pts is %.3f' %
(val_miou_pts, best_val_miou_pts))
logger.info('Current val loss is %.3f' %
(lossMeter.avg))
epoch += 1
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config', default='config/tpv_lidarseg.py')
parser.add_argument('--work-dir', type=str, default='./out/tpv_lidarseg')
parser.add_argument('--dist', action='store_true')
parser.add_argument('--resume-from', type=str, default='')
parser.add_argument('--hfai', action='store_true', default=False)
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
if args.dist:
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.gpus)
else:
main(0, args)