-
Notifications
You must be signed in to change notification settings - Fork 1
/
netB_flopsProfiler.py
executable file
·340 lines (272 loc) · 11.6 KB
/
netB_flopsProfiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# to split test also :
#!/usr/bin/env python
import numpy as np
import csv
import os
import sys
import logging
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import lightning.pytorch as pl
from os.path import basename
import torch.optim as optim
from pytorch_lightning.loggers import WandbLogger
from torch.utils.data import Dataset
import utils
import wandb
import time
import psutil
from deepspeed.profiling.flops_profiler import get_model_profile
from deepspeed.accelerator import get_accelerator
np.random.seed(42)
pl.seed_everything(42, workers=True)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--window_before', type=int, default=10, help='window before')
parser.add_argument('--window_after', type=int, default=10, help='window after')
parser.add_argument('--specific', type=bool, default=False, help='specific')
parser.add_argument('--next_pos', type=bool, default=False, help='next_pos')
parser.add_argument('--last_pos', type=bool, default=False, help='last_pos')
parser.add_argument('--add_five', type=bool, default=False, help='add_five')
parser.add_argument("--file", type=str, default="./biotac_single_contact_response/2018-01-19-18-16-58_biotac_ff_stick_calibration.bag.csv", help="file path")
args = parser.parse_args()
if args.specific:
if not args.add_five:
name="NetworkB_Pytorch_DefaultConfig_NoWindow_-"+str(args.window_before)+"+"+str(args.window_after)
else:
name="NetworkB_Pytorch_DefaultConfig_NoWindow_-"+str(args.window_before)+"+"+str(args.window_after)+"-5+5"
else:
name="NetworkB_Pytorch_DefaultConfig_Window_-"+str(args.window_before)+"+"+str(args.window_after)
if args.last_pos:
name=name+"_lastPos"
if args.next_pos:
name=name+"_nextPos"
name=name+"_FlopsProfiler"
wandb_logger = WandbLogger(log_model="all",
project="BioTacPlugin",
name=name,
# run_name
# track hyperparameters and run metadata with wandb.config
config={
"note": "Default Setting: TrainVal dataset Split NetworkB Pytorch",
"optimizer": "Adam",
"loss": "default_loss",
"epoch": 50,
"batch_size": 1024
})
file_path = args.file
reader = csv.reader(open(file_path))
rows = [row for row in reader]
data_columns = [7, 8, 9, 10] + list(range(12, 31))
headers_out = np.array(rows[0])[data_columns].tolist()
rows = rows[1:]
data = np.array(rows).astype(float)
last_position = [[np.array((0,0,0))] for k in range(10)] # placeholder: first window values are 0 they will be deleted anyway
for i in range(10,len(data)):
j=1
while j < 10:
if (abs(data[i][1]-data[i-j][1]) > 1e-6) or (abs(data[i][2]-data[i-j][2]) > 1e-6) or (abs(data[i][3]-data[i-j][3]) > 1e-6) :
last_position.append([data[i-j,1:4]])
break
j+=1
if j == 10:
last_position.append([data[i-j,1:4]])
last_position = np.array(last_position).squeeze()
next_position = []
for i in range(0,len(data)-10):
j=1
while j < 10:
if (abs(data[i][1]-data[i+j][1]) > 1e-6) or (abs(data[i][2]-data[i+j][2]) > 1e-6) or (abs(data[i][3]-data[i+j][3]) > 1e-6) :
next_position.append([data[i+j,1:4]])
break
j+=1
if j == 10:
next_position.append([data[i+j,1:4]])
# placeholder: last window values are 0 they will be deleted anyway
for k in range(10):
next_position.append([np.array((0,0,0))])
next_position = np.array(next_position).squeeze()
data_in = np.hstack((
data[:,1:4],
))
if args.next_pos and args.next_pos:
data_in = np.hstack((
data_in,
last_position,
next_position,
))
if args.specific:
data_in = np.hstack((
data_in,
data[:,4:7],
))
if args.window_before>0:
data_in = np.hstack((
data_in,
np.roll(data[:,4:7], +args.window_before, axis=0), # future
))
if args.window_after>0:
data_in = np.hstack((
data_in,
np.roll(data[:,4:7], -args.window_after, axis=0), # past
))
if args.add_five:
data_in = np.hstack((
data_in,
np.roll(data[:,4:7], +5, axis=0), # future
np.roll(data[:,4:7], -5, axis=0), # past
))
else:
if args.window_before>0:
data_in = np.hstack((
data_in,
*[np.roll(data[:,4:7], -i, axis=0) for i in range(-args.window_before, args.window_after+1)],
))
data_in = np.hstack((
data_in,
data[:,11:12],
))
if args.last_pos and args.next_pos:
range_pos = list(range(0,9))
else:
range_pos = list(range(0,3))
if args.specific:
if args.add_five:
range_force = list(range(len(range_pos),(len(range_pos)+15)))
else:
if args.window_after>0:
range_force = list(range(len(range_pos),len(range_pos)+3*3))
else:
range_force = list(range(len(range_pos),len(range_pos)+3*2))
if args.window_before==0:
range_force = list(range(len(range_pos),len(range_pos)+3))
else:
if args.window_after>0:
range_force = list(range(len(range_pos),len(range_pos)+3*21))
else:
range_force = list(range(len(range_pos),len(range_pos)+3*11))
range_temp = list(range(len(range_pos)+len(range_force),len(range_pos)+len(range_force)+1))
data_out = data[:,data_columns]
headers_in = [
"px", "py", "pz",
"fx", "fy", "fz", "fx1", "fy1", "fz1", "fx2", "fy2", "fz2", "t"
]
#correct the first 10 samples
data_in = data_in[10:-10]
data_out = data_out[10:-10]
in_cols = data_in.shape[1]
out_cols = data_out.shape[1]
class NetworkB(pl.LightningModule):
def __init__(self, in_cols, out_cols, fold_ind):
super(NetworkB, self).__init__()
self.fold_ind = fold_ind
self.area_selector = self.Selector(range_pos, input_shape=(in_cols,))
self.force_selector = self.Selector(range_force, input_shape=(in_cols,))
self.temperature_selector = self.Selector(range_temp, input_shape=(in_cols,))
self.area_layers = self.build_layers( len(range_pos), [512,512,512,64], activations=['relu','relu','relu','linear'])
self.force_layers = self.build_layers(len(range_force), [256,256,256,64], activations=['relu','relu','relu','linear']) #, bias_regularizer=nn.L1Loss(0.0015))
self.activation_layers = self.build_layers(64, [256,256,23], activations=['relu','relu','linear'])
self.temperature_layers = self.build_layers( 1, [256,23], activations=['sigmoid','linear'])
self.linear_layers = self.build_layers(23, [out_cols], activations=['linear'])
def Selector(self, indices, input_shape):
weights = torch.zeros(len(indices), input_shape[0])
for i in range(len(indices)):
weights[i, indices[i]] = 1
layer = nn.Linear(input_shape[0], len(indices), bias=False)
with torch.no_grad():
layer.weight.copy_(weights)
layer.weight.requires_grad = False
return layer
def build_layers(self, in_features , neuron_layers, activations, bias_regularizer=None):
layers = []
layers.append(nn.Linear(in_features, neuron_layers[0]))
if activations[0] == 'relu':
layers.append(nn.ReLU())
elif activations[0] == 'sigmoid':
layers.append(nn.Sigmoid())
elif activations[0] == 'linear':
layers.append(nn.Identity())
if bias_regularizer:
layers.append(bias_regularizer)
for ind, nb_neuron in enumerate(neuron_layers[1:]):
layers.append(nn.Linear(neuron_layers[ind], nb_neuron))
if activations[ind+1] == 'relu':
layers.append(nn.ReLU())
elif activations[ind+1] == 'sigmoid':
layers.append(nn.Sigmoid())
elif activations[ind+1] == 'linear':
layers.append(nn.Identity())
if bias_regularizer:
layers.append(bias_regularizer)
return nn.Sequential(*layers)
def forward(self, x):
area = self.area_selector(x)
force = self.force_selector(x)
temperature = self.temperature_selector(x)
area = self.area_layers(area)
force = self.force_layers(force)
activation = force * area
activation = self.activation_layers(activation)
temperature = self.temperature_layers(temperature)
l = activation + temperature
l = self.linear_layers(l)
return l
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=0.00005, betas=(0.97, 0.999))
return optimizer
def training_step(self, batch, batch_idx):
x, y = batch
y_pred = self(x)
loss = self.custom_loss(y, y_pred)
self.log('train_loss_'+str(self.fold_ind), loss)
smae=self.smae(y, y_pred)
self.log('train_smae_'+str(self.fold_ind), smae)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_pred = self(x)
loss = self.custom_loss(y, y_pred)
self.log('val_loss_'+str(self.fold_ind), loss)
smae=self.smae(y, y_pred)
self.log('val_smae_'+str(self.fold_ind), smae)
return y_pred
def predict_step(self, batch, batch_idx):
x, y = batch
y_pred = self(x)
return y_pred
def custom_loss(self, y_true, y_pred):
err = y_pred - y_true
err = torch.abs(err) + torch.pow(err, 2)
return torch.mean(err)
def smae(self, y_true, y_pred):
err = y_pred[:,[0,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]] - y_true[:,[0,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]]
err = (torch.abs(err))
return torch.mean(err)
###############
def flops_profiler(model, in_cols, output_file):
with get_accelerator().device(0):
batch_size = 1
flops, macs, params = get_model_profile(model=model, # model
input_shape=(batch_size, in_cols), # input shape to the model. If specified, the model takes a tensor with this shape as the only positional argument.
args=None, # list of positional arguments to the model.
kwargs=None, # dictionary of keyword arguments to the model.
print_profile=True, # prints the model graph with the measured profile attached to each module
detailed=True, # print the detailed profile
module_depth=-1, # depth into the nested modules, with -1 being the inner most modules
top_modules=1, # the number of top modules to print aggregated profile
warm_up=10, # the number of warm-ups before measuring the time of each module
as_string=True, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k)
output_file=output_file, # path to the output file. If None, the profiler prints to stdout.
ignore_modules=None) # the list of modules to ignore in the profiling
return flops, macs, params
model = NetworkB(in_cols, out_cols, 0)
# train model
trainer = pl.Trainer(accelerator="gpu", devices=1, logger=wandb_logger, max_epochs=50, deterministic=True, callbacks=[utils.MyProgressBar()])
wandb_logger.experiment.config.update({"epoch": 50}) # just to init the logging
flops, macs, params = flops_profiler(model, in_cols, output_file="./flops_profiler/"+str(wandb_logger.experiment.name)+".txt")
wandb.log({"flops": flops})
wandb.log({"macs": macs})
wandb.log({"params": params})
wandb.finish()