-
Notifications
You must be signed in to change notification settings - Fork 1
/
Transformer_train_pytorch_CV_SMACBest_testvaltrain.py
executable file
·633 lines (510 loc) · 24 KB
/
Transformer_train_pytorch_CV_SMACBest_testvaltrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
#!/usr/bin/env python
Best_config ={
"num_layers": 7,
"embed_dim": 64,
"hidden_dim": 128,
"num_heads": 1,
"dropout": 0.0,
"learning_rate": 0.0004,
"batch_size": 256,
}
import numpy as np
import csv
import os
import sys
import logging
import utils
from os.path import basename
import psutil
from pytorch_lightning.loggers import WandbLogger
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
import wandb
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import lightning.pytorch as pl
import torch.optim as optim
from torch.utils.data import Dataset
import time
import argparse
from fvcore.nn.flop_count import flop_count
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--window_before', type=int, default=10, help='window before')
parser.add_argument('--window_after', type=int, default=10, help='window after')
parser.add_argument('--specific', type=bool, default=False, help='specific')
parser.add_argument('--next_pos', type=bool, default=False, help='next_pos')
parser.add_argument('--last_pos', type=bool, default=False, help='last_pos')
parser.add_argument("--file", type=str, default="./biotac_single_contact_response/2018-01-19-18-16-58_biotac_ff_stick_calibration.bag.csv", help="file path")
parser.add_argument("--prefix", type=str, default="", help="prefix")
parser.add_argument('--load_smac', type=bool, default=False, help='load_smac')
parser.add_argument('--add_five', type=bool, default=False, help='add_five')
args = parser.parse_args()
seed=args.seed
np.random.seed(seed)
pl.seed_everything(seed, workers=True)
exp_name="Transformer_SMACBest_Pytorch"
if args.specific:
exp_name += "_No_Window_-"+str(args.window_before)+"+"+str(args.window_after)
else:
exp_name += "_Window_-"+str(args.window_before)+"+"+str(args.window_after)
if args.last_pos:
exp_name += "_LastPos"
if args.next_pos:
exp_name += "_NextPos"
exp_name += "_CV_testvaltrain"+str(args.prefix)
wandb_logger = WandbLogger(log_model="all",
project="BioTacPlugin",
group="DDP",
# run_name
name= exp_name,
# track hyperparameters and run metadata with wandb.config
config={
"note": "SMACBest Setting: TrainValTest dataset Split Pytorch EralyStop Transformers "+str(args.prefix),
"optimizer": "Adam",
"loss": "default_loss",
})
if args.load_smac:
smac_path="./smac3_output/SMACSearch_Transformer_pytorch"
if args.specific:
smac_path += "_No_Window_-"+str(args.window_before)+"+"+str(args.window_after)
else:
smac_path += "_Window_-"+str(args.window_before)+"+"+str(args.window_after)
if args.last_pos:
smac_path += "_LastPos"
if args.next_pos:
smac_path += "_NextPos"
smac_path += "_testtrain"+str(args.prefix)
# extract best_config
Best_config=utils.BestSMAC_Transformer(smac_path)
print("Best_config: ", Best_config)
# save best_config
wandb_logger.experiment.config.update(Best_config)
file_path = args.file
reader = csv.reader(open(file_path))
rows = [row for row in reader]
data_columns = [7, 9, ] + list(range(12, 31))
headers_out = np.array(rows[0])[data_columns].tolist()
rows = rows[1:]
data = np.array(rows).astype(float)
#closest_points = np.load('stick_closest_points.npy', allow_pickle=True)
# chnage the x,y,z with closest_points
#data[:,1:4] = closest_points
last_position = [[np.array((0,0,0))] for k in range(args.window_before)] # placeholder: first window values are 0 they will be deleted anyway
for i in range(args.window_before,len(data)):
j=1
while j < args.window_before:
if (abs(data[i][1]-data[i-j][1]) > 1e-6) or (abs(data[i][2]-data[i-j][2]) > 1e-6) or (abs(data[i][3]-data[i-j][3]) > 1e-6) :
last_position.append([data[i-j,1:4]])
break
j+=1
if j == args.window_before:
last_position.append([data[i-j,1:4]])
last_position = np.array(last_position).squeeze()
next_position = []
for i in range(0,len(data)-args.window_after):
j=1
while j < args.window_after:
if (abs(data[i][1]-data[i+j][1]) > 1e-6) or (abs(data[i][2]-data[i+j][2]) > 1e-6) or (abs(data[i][3]-data[i+j][3]) > 1e-6) :
next_position.append([data[i+j,1:4]])
break
j+=1
if j == args.window_after:
next_position.append([data[i+j,1:4]])
# placeholder: last window values are 0 they will be deleted anyway
for k in range(args.window_after):
next_position.append([np.array((0,0,0))])
next_position = np.array(next_position).squeeze()
data_in = np.hstack((data[:,1:4],)) # first position
if args.last_pos:
data_in = np.hstack((data_in, last_position))
if args.next_pos:
data_in = np.hstack((data_in, next_position))
if args.specific:
data_in = np.hstack((
data_in,
data[:,4:7],
)) # pos(t) , forces (t) , forces (t+10) , forces (t-10)
if args.window_after>0:
data_in = np.hstack((
data_in,
np.roll(data[:,4:7], -args.window_after, axis=0),
))
if args.window_before>0:
data_in = np.hstack((
data_in,
np.roll(data[:,4:7], +args.window_before, axis=0),
))
if args.add_five:
data_in = np.hstack((
data_in,
np.roll(data[:,4:7], -5, axis=0),
))
data_in = np.hstack((
data_in,
np.roll(data[:,4:7], +5, axis=0),
))
else:
data_in = np.hstack((
data_in,
*[np.roll(data[:,4:7], -i, axis=0) for i in range(-args.window_before, args.window_after+1)],
)) # pos(t) , forces (t-10) ,... forces (t-1), forces (t) # 10 windows of forces
data_out = data[:,data_columns]
#correct the first and last 10 samples
window_before=10
window_after=10
if window_after>0 and window_before>0:
data_in = data_in[window_before:-window_after] # -+10 to have the same size as ruppel
data_out = data_out[window_before:-window_after]
elif window_after>0 and window_before==0:
data_in = data_in[:-window_after]
data_out = data_out[:-window_after]
elif window_after==0 and window_before>0:
data_in = data_in[window_before:]
data_out = data_out[window_before:]
in_cols = data_in.shape[1]
out_cols = data_out.shape[1]
#################
# split data in train and test set:
folds=10
test_size = 1000
nb_test = 30
train_data_in_folds, train_data_out_folds, train_data_in_scaled_folds, train_data_out_scaled_folds, test_data_in_folds, test_data_out_folds, test_data_in_scaled_folds, test_data_out_scaled_folds, mean_train_in_folds, std_train_in_folds, mean_train_out_folds, std_train_out_folds = [], [], [], [], [], [], [], [], [], [], [], []
data_splits_indexes = np.arange(data_in.shape[0]// test_size)
np.random.shuffle(data_splits_indexes)
for j in range(folds):
if j<folds-1:
idx_test=np.sort(data_splits_indexes[j*nb_test:(j+1)*nb_test]*test_size) # take 30 chunks for test
else:
idx_test=np.sort(data_splits_indexes[j*nb_test:]*test_size) # the last one do have 22 chunks
# make sure to delete the window around the test samples
test_samples_indexes=[]
for i in idx_test:
chunk=list(range(i, i+test_size))
if (i//test_size)==len(data_splits_indexes):
chunk=list(range(i, len(data_in)))
if (((i//test_size)-1) not in idx_test) and ((i//test_size)!=0):
if window_before>0:
chunk=chunk[window_before:]
if (((i//test_size)+1) not in idx_test) and ((i//test_size)!=len(data_splits_indexes)):
if window_after>0:
chunk=chunk[:-window_after]
test_samples_indexes=np.concatenate((test_samples_indexes,chunk))
test_samples_indexes=test_samples_indexes.astype(int)
idx_train = ((np.setdiff1d(data_splits_indexes, idx_test//test_size))*test_size).astype(int)
train_samples_indexes=[]
for i in idx_train:
chunk=list(range(i, i+test_size))
if (i//test_size)==len(data_splits_indexes):
chunk=list(range(i, len(data_in)))
if (((i//test_size)-1) not in idx_train) and ((i//test_size)!=0):
if window_before>0:
chunk=chunk[window_before:]
if (((i//test_size)+1) not in idx_train) and ((i//test_size)!=len(data_splits_indexes)):
if window_after>0:
chunk=chunk[:-window_after]
train_samples_indexes=np.concatenate((train_samples_indexes,chunk))
train_samples_indexes=train_samples_indexes.astype(int)
# split data into training and test
data_in_train = data_in[train_samples_indexes]
data_out_train = data_out[train_samples_indexes]
data_in_test = data_in[test_samples_indexes]
data_out_test = data_out[test_samples_indexes]
#NOTE: mean and std from all data(train + test)
mean_in = np.mean(np.concatenate((data_in_train,data_in_test)), axis=0, keepdims=True)
mean_out = np.mean(np.concatenate((data_out_train,data_out_test)), axis=0, keepdims=True)
std_in = np.std(np.concatenate((data_in_train,data_in_test)), axis=0, keepdims=True)
std_out = np.std(np.concatenate((data_out_train,data_out_test)), axis=0, keepdims=True)
data_in_train_scaled = (data_in_train - mean_in ) / std_in
data_out_train_scaled = (data_out_train - mean_out) / std_out
data_in_test_scaled = (data_in_test - mean_in) / std_in
data_out_test_scaled = (data_out_test - mean_out) / std_out
train_data_in_folds.append(data_in_train)
train_data_out_folds.append(data_out_train)
train_data_in_scaled_folds.append(data_in_train_scaled)
train_data_out_scaled_folds.append(data_out_train_scaled)
test_data_in_folds.append(data_in_test)
test_data_out_folds.append(data_out_test)
test_data_in_scaled_folds.append(data_in_test_scaled)
test_data_out_scaled_folds.append(data_out_test_scaled)
mean_train_in_folds.append(mean_in)
std_train_in_folds.append(std_in)
mean_train_out_folds.append(mean_out)
std_train_out_folds.append(std_out)
class dataset(Dataset):
def __init__(self, data_in, data_out):
self.data_in = data_in.astype(np.float32)
self.data_out = data_out.astype(np.float32)
def __len__(self):
return len(self.data_out)
def __getitem__(self, idx):
# tensor
x = torch.from_numpy(self.data_in[idx])
y = torch.from_numpy(self.data_out[idx])
return x,y
# code adjusted from: pytorch lightning tutorial on ViT
class AttentionBlock(nn.Module):
def __init__(self, embed_dim, hidden_dim, num_heads, dropout=0.0):
"""Attention Block.
Args:
embed_dim: Dimensionality of input and attention feature vectors
hidden_dim: Dimensionality of hidden layer in feed-forward network
(usually 2-4x larger than embed_dim)
num_heads: Number of heads to use in the Multi-Head Attention block
dropout: Amount of dropout to apply in the feed-forward network
"""
super().__init__()
self.layer_norm_1 = nn.LayerNorm(embed_dim)
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
self.layer_norm_2 = nn.LayerNorm(embed_dim)
self.linear = nn.Sequential(
nn.Linear(embed_dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, embed_dim),
nn.Dropout(dropout),
)
def forward(self, x):
inp_x = self.layer_norm_1(x)
x = x + self.attn(inp_x, inp_x, inp_x)[0]
x = x + self.linear(self.layer_norm_2(x))
return x
class NetworkTransformer(nn.Module):
def __init__(
self,model_args
):
"""Vision Transformer.
Args:
embed_dim: Dimensionality of the input feature vectors to the Transformer
hidden_dim: Dimensionality of the hidden layer in the feed-forward networks
within the Transformer
num_heads: Number of heads to use in the Multi-Head Attention block
num_layers: Number of layers to use in the Transformer
num_outputs: Number of outputs to predict
patch_size: Number of pixels that the patches have per dimension
num_patches: Maximum number of patches an image can have
dropout: Amount of dropout to apply in the feed-forward network and
on the input encoding
"""
super().__init__()
self.patch_size = model_args["patch_size"]
self.num_patches = model_args["num_patches"]
self.embed_dim = model_args["embed_dim"]
self.hidden_dim = model_args["hidden_dim"]
self.num_heads = model_args["num_heads"]
self.num_layers = model_args["num_layers"]
self.num_outputs = model_args["num_outputs"]
self.dropout = model_args["dropout"]
# Layers/Networks
self.input_layer = nn.Linear(self.patch_size, self.embed_dim)
self.transformer = nn.Sequential(
*(AttentionBlock(self.embed_dim, self.hidden_dim, self.num_heads, dropout=self.dropout) for _ in range(self.num_layers))
)
self.mlp_head = nn.Sequential(nn.LayerNorm(self.embed_dim), nn.Linear(self.embed_dim, self.num_outputs))
self.dropout = nn.Dropout(self.dropout)
# Parameters/Embeddings
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.pos_embedding = nn.Parameter(torch.randn(1, 1 + self.num_patches, self.embed_dim))
def forward(self, x):
# Preprocess input
x=x.reshape((x.shape[0], self.num_patches, self.patch_size))
B, T, _ = x.shape
x = self.input_layer(x)
# Add CLS token and positional encoding
cls_token = self.cls_token.repeat(B, 1, 1)
x = torch.cat([cls_token, x], dim=1)
x = x + self.pos_embedding[:, : T + 1]
# Apply Transforrmer
x = self.dropout(x)
x = x.transpose(0, 1)
x = self.transformer(x)
# Perform classification prediction
cls = x[0]
out = self.mlp_head(cls)
return out
class Network_Transformer(pl.LightningModule):
def __init__(self, model_args,):
super(Network_Transformer, self).__init__()
self.save_hyperparameters()
self.learning_rate = model_args["learning_rate"]
self.model = NetworkTransformer(model_args)
self.fold = model_args["fold"]
def forward(self, x):
l = self.model(x)
return l
def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(), lr=self.learning_rate)
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 150], gamma=0.1)
return [optimizer], [lr_scheduler]
def training_step(self, batch, batch_idx):
x, y = batch
y_pred = self(x)
loss = self.custom_loss(y, y_pred)
self.log('train_loss_'+str(self.fold), loss)
smae=self.smae(y, y_pred)
self.log('train_smae_'+str(self.fold), smae)
return loss
def predict_step(self, batch, batch_idx):
x, y = batch
y_pred = self(x)
return y_pred
def validation_step(self, batch, batch_idx):
x, y = batch
y_pred = self(x)
loss = self.custom_loss(y, y_pred)
self.log('val_loss_'+str(self.fold), loss)
smae=self.smae(y, y_pred)
self.log('val_smae_'+str(self.fold), smae)
return y_pred
def custom_loss(self, y_true, y_pred):
err = y_pred - y_true
err = (torch.abs(err)) + torch.pow(err, 2)
return torch.mean(err)
def smae(self, y_true, y_pred):
err = y_pred - y_true
err = (torch.abs(err))
return torch.mean(err)
# Cross Validation
data={}
all_mae = []
all_smae = []
all_mae_electrodes = []
all_smae_electrodes = []
all_rmse = []
all_nrmse = []
all_rmse_electrodes = []
all_nrmse_electrodes = []
fold_ind=0
for train_data_in, train_data_out, train_data_in_scaled, train_data_out_scaled, test_data_in, test_data_out, test_data_in_scaled, test_data_out_scaled, mean_out, std_out in zip(train_data_in_folds, train_data_out_folds, train_data_in_scaled_folds, train_data_out_scaled_folds, test_data_in_folds, test_data_out_folds, test_data_in_scaled_folds, test_data_out_scaled_folds, mean_train_out_folds, std_train_out_folds):
print("Fold: ", fold_ind)
data["Fold"+str(fold_ind)]={}
# split train data into train and validation
nb_val = 30
val_size = 1000
# select 30 random numbers between 0+val_size and 30000-val_size
idx_val = np.random.randint(val_size, train_data_in.shape[0]-val_size, size=nb_val)
idx_val = np.sort(idx_val)
while (np.any(np.diff(idx_val) <= val_size)):
idx_val = np.random.randint(val_size, train_data_in.shape[0]-val_size, size=nb_val)
idx_val = np.sort(idx_val)
val_samples_indexes=[]
for i in idx_val:
chunk=list(range(i+window_before, i+val_size-window_after))
val_samples_indexes=np.concatenate((val_samples_indexes,chunk))
val_samples_indexes=val_samples_indexes.astype(int)
idx_train = idx_val + val_size
train_samples_indexes=list(range(0, idx_train[0] - val_size-window_after)) # i am sure that the first chunk is not in the validation set
for i in range(0,len(idx_train)-1):
chunk=list(range(idx_train[i]+window_before, idx_train[i+1]-val_size-window_after))
train_samples_indexes=np.concatenate((train_samples_indexes,chunk))
# add the last chunk
train_samples_indexes=np.concatenate((train_samples_indexes,list(range(idx_train[-1]+window_before, train_data_in.shape[0]))))
# int
train_samples_indexes=train_samples_indexes.astype(int)
# split data into training and validation
train_data_in_train = train_data_in[train_samples_indexes]
train_data_in_train_scaled = train_data_in_scaled[train_samples_indexes]
train_data_out_train = train_data_out[train_samples_indexes]
train_data_out_train_scaled = train_data_out_scaled[train_samples_indexes]
train_data_in_val = train_data_in[val_samples_indexes]
train_data_in_val_scaled = train_data_in_scaled[val_samples_indexes]
train_data_out_val = train_data_out[val_samples_indexes]
train_data_out_val_scaled = train_data_out_scaled[val_samples_indexes]
train_dataset = dataset(train_data_in_train_scaled, train_data_out_train_scaled)
validation_dataset = dataset(train_data_in_val_scaled, train_data_out_val_scaled)
test_dataset = dataset(test_data_in_scaled, test_data_out_scaled)
train_loader = DataLoader(train_dataset, batch_size=Best_config["batch_size"], shuffle=True, num_workers=4)
validation_loader = DataLoader(validation_dataset, batch_size=1024, shuffle=False, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=1024, shuffle=False, num_workers=4)
model_args={"embed_dim": Best_config["embed_dim"],
"hidden_dim": Best_config["hidden_dim"],
"num_heads": Best_config["num_heads"],
"num_layers": Best_config["num_layers"],
"patch_size": 3,
"num_patches": in_cols//3,
"num_outputs": out_cols,
"dropout": Best_config["dropout"],
"learning_rate": Best_config["learning_rate"],
"fold": fold_ind,}
model = Network_Transformer(model_args=model_args,)
#print(model)
print("Number of parameters: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
checkpoint_callback = ModelCheckpoint(
dirpath=os.getcwd()+"/checkpoints/"+wandb_logger.experiment.name+"_Fold"+str(fold_ind)+"/",
save_top_k=1,
verbose=True,
monitor='val_loss_'+str(fold_ind),
mode='min',
)
trainer = pl.Trainer(accelerator="gpu", devices=1, max_epochs=100, deterministic=True,logger=wandb_logger,callbacks=[utils.MyProgressBar(),checkpoint_callback, EarlyStopping(monitor="val_loss_"+str(fold_ind), mode="min", patience=8),] #LearningRateMonitor("epoch")
,enable_checkpointing=True)
trainer.fit(model=model, train_dataloaders=train_loader, val_dataloaders=validation_loader)
model = Network_Transformer.load_from_checkpoint(checkpoint_callback.best_model_path, in_cols=in_cols, out_cols=out_cols, config=Best_config)
# predict on test set
predictions = trainer.predict(model=model, dataloaders=test_loader,)
if fold_ind==0:
test_dataset_one_input = dataset( test_data_in_scaled[0:1], test_data_out_scaled[0:1])
test_loader_one_input = DataLoader(test_dataset_one_input, batch_size=1, shuffle=False, num_workers=4)
predictions = np.vstack(predictions)
y_pred = predictions * std_out + mean_out
if fold_ind==0:
np.save('./results_cv/'+str(wandb_logger.experiment.name)+'_fold_0_predictions.npy', y_pred)
np.save('./results_cv/'+str(wandb_logger.experiment.name)+'_fold_0_test_data_out.npy', test_data_out)
mae = np.mean(np.abs(y_pred - test_data_out), axis=0)
#std_train_channels = np.std(train_data_out, axis=0)
#NOTE: mean and std from all data(train + test)
#smae = mae / std_out
smae = np.mean(np.abs(predictions - test_data_out_scaled), axis=0)
mape = np.mean(np.abs((y_pred - test_data_out) / test_data_out), axis=0)
rmse = np.sqrt(np.mean(np.power(y_pred - test_data_out, 2), axis=0))
nrmse = np.sqrt(np.mean(np.power(predictions - test_data_out_scaled, 2), axis=0))
print("Mean test_mae (Cost): ", np.mean(mae))
print("Mean test_mae_scaled (Cost): ", np.mean(smae))
mae_electrodes = np.mean(mae[-19:])
smae_electrodes = np.mean(smae[-19:])
rmse_electrodes = np.mean(rmse[-19:])
nrmse_electrodes = np.mean(nrmse[-19:])
print("Mean test_mae_electrodes: ", mae_electrodes)
print("Mean test_mae_scaled_electrodes: ", smae_electrodes)
all_mae_electrodes.append(mae_electrodes)
all_smae_electrodes.append(smae_electrodes)
all_mae.append(np.mean(mae))
all_smae.append(np.mean(smae))
all_rmse.append(np.mean(rmse))
all_nrmse.append(np.mean(nrmse))
all_rmse_electrodes.append(rmse_electrodes)
all_nrmse_electrodes.append(nrmse_electrodes)
# save data into dictionary
data["Fold"+str(fold_ind)]["mae_channels"]=mae
data["Fold"+str(fold_ind)]["smae_channels"]=smae
data["Fold"+str(fold_ind)]["mape_channels"]=mape
data["Fold"+str(fold_ind)]["rmse_channels"]=rmse
data["Fold"+str(fold_ind)]["nrmse_channels"]=nrmse
wandb.log({"Fold"+str(fold_ind)+"_mean_smae_channels": np.mean(smae)})
# log number of parameters
if fold_ind==0:
wandb.log({"nb_parameters": sum(p.numel() for p in model.parameters() if p.requires_grad)})
fold_ind+=1
wandb.log({"All_Folds_mean_mae_channels": np.round(np.mean(all_mae),3)})
wandb.log({"All_Folds_std_mae_channels": np.round(np.std(all_mae),3)})
wandb.log({"All_Folds_mean_mae_electrodes": np.round(np.mean(all_mae_electrodes),3)})
wandb.log({"All_Folds_std_mae_electrodes": np.round(np.std(all_mae_electrodes),3)})
wandb.log({"All_Folds_mean_smae_channels": np.round(np.mean(all_smae),3)})
wandb.log({"All_Folds_std_smae_channels": np.round(np.std(all_smae),3)})
wandb.log({"All_Folds_mean_smae_electrodes": np.round(np.mean(all_smae_electrodes),3)})
wandb.log({"All_Folds_std_smae_electrodes": np.round(np.std(all_smae_electrodes),3)})
wandb.log({"All_Folds_mean_rmse_channels": np.round(np.mean(all_rmse),3)})
wandb.log({"All_Folds_std_rmse_channels": np.round(np.std(all_rmse),3)})
wandb.log({"All_Folds_mean_rmse_electrodes": np.round(np.mean(all_rmse_electrodes),3)})
wandb.log({"All_Folds_std_rmse_electrodes": np.round(np.std(all_rmse_electrodes),3)})
wandb.log({"All_Folds_mean_nrmse_channels": np.round(np.mean(all_nrmse),3)})
wandb.log({"All_Folds_std_nrmse_channels": np.round(np.std(all_nrmse),3)})
wandb.log({"All_Folds_mean_nrmse_electrodes": np.round(np.mean(all_nrmse_electrodes),3)})
wandb.log({"All_Folds_std_nrmse_electrodes": np.round(np.std(all_nrmse_electrodes),3)})
# save data dictionary
import pickle
with open('./results_cv/'+str(wandb_logger.experiment.name)+'_results.pkl', 'wb') as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
wandb.finish()