-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpre_train_stage2_aug.py
291 lines (258 loc) · 11.5 KB
/
pre_train_stage2_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch
import torchvision
from torchvision import datasets,transforms
from torchvision.transforms import functional as TF
import torch.nn.functional as F
import torch.nn as nn
import torch.nn.functional as fun
import torch.optim as optim
from PIL import Image
import numpy as np
from torch.autograd import Variable
import sys
import os
from skimage import io
import matplotlib.pyplot as plt
import pylab
import time,datetime
from config import batch_size,pre_output_path,epoch_num,loss_image_path,OnServer,UseF1,pre_stage2_output_path
from model.model import EndtoEndModel,ETE_stage1,ETE_select,ETE_stage2,label_channel,label_list,make_inverse,calc_centroid
from data.loaddata import data_loader_Aug,data_loader_parts_Aug
import warnings
warnings.filterwarnings("ignore")
train_data=data_loader_parts_Aug("train",batch_size,"stage2");
test_data=data_loader_parts_Aug("test",batch_size,"stage2");
val_data=data_loader_parts_Aug("val",batch_size,"stage2");
use_gpu = torch.cuda.is_available()
if OnServer:
device = torch.device("cuda:4" if torch.cuda.is_available() else "cpu")
else:
import matplotlib;matplotlib.use('TkAgg');
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#model_stage2=Network2();
model_stage2=ETE_stage2(device);
bestloss=1000000
bestf1=0
def train(epoch):
model_stage2.train();
'''
part1_time=0;
part2_time=0;
part3_time=0;
prev_time=time.time();
'''
unloader = transforms.ToPILImage()
losstmp=0;
k=0;
for batch_idx,sample in enumerate(train_data.get_loader()):
'''
now_time=time.time();
part3_time+=now_time-prev_time;
prev_time=now_time;
'''
if (use_gpu):
for i in range(6):
sample['image'][i]=sample['image'][i].to(device)
sample['label'][i]=sample['label'][i].to(device)
optimizer_stage2.zero_grad();
stage2_label=model_stage2(sample['image'],None);
parts2=[];
parts_label2=[];
loss=[];
for i in range(6):
'''
for j in range(sample['image'].size()[0]):
if (not os.path.exists("./data/trainimg_output/"+train_data.get_namelist()[(k+j)%2000])):
os.mkdir("./data/trainimg_output/"+train_data.get_namelist()[(k+j)%2000]);
image3=transforms.ToPILImage()(sample['image_org'][j].cpu().clone()).convert('RGB')
image3.save("./data/trainimg_output/"+train_data.get_namelist()[(k+j)%2000]+'/'+str((k+j)//2000)+'_orgimage'+'.jpg',quality=100);
image3=transforms.ToPILImage()(parts2[i][j].cpu().clone()).convert('RGB')
image3.save("./data/trainimg_output/"+train_data.get_namelist()[(k+j)%2000]+'/'+str((k+j)//2000)+'lbl0'+str(i)+'_thetalabel'+'.jpg',quality=100);
image3=unloader(np.uint8(parts_label2[i][j][1].cpu().detach().numpy()))
image3.save("./data/trainimg_output/"+train_data.get_namelist()[(k+j)%2000]+'/'+str((k+j)//2000)+'lbl0'+str(i)+'_label'+'_thetalabel'+'.jpg',quality=100);
'''
loss_tmp=fun.cross_entropy(stage2_label[i],sample['label'][i].argmax(dim=1, keepdim=False))
loss.append(loss_tmp);
k+=sample['image'][0].shape[0];
if (batch_idx%100==0):
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(sample['image']), len(train_data.get_loader().dataset),
100. * batch_idx / len(train_data.get_loader()),torch.sum(torch.stack(loss))))
'''
now_time=time.time();
part1_time+=now_time-prev_time;
prev_time=now_time;
'''
loss=torch.stack(loss)
loss.backward(torch.ones(6, device=device, requires_grad=False))
losstmp+=torch.sum(loss).item();
optimizer_stage2.step();
'''
now_time=time.time();
part2_time+=now_time-prev_time;
prev_time=now_time;
print("batch_idx=",batch_idx);
print("part1_time=",part1_time);
print("part2_time=",part2_time);
print("part3_time=",part3_time);
'''
def test(epoch):
model_stage2.eval();
global bestloss,bestf1;
test_loss=0
hists=[]
for sample in val_data.get_loader():
if (use_gpu):
for i in range(6):
sample['image'][i]=sample['image'][i].to(device)
sample['label'][i]=sample['label'][i].to(device)
stage2_label=model_stage2(sample['image'],None);
for i in range(6):
test_loss+=fun.cross_entropy(stage2_label[i],sample['label'][i].argmax(dim=1, keepdim=False)).data;
output_2 = torch.softmax(stage2_label[i], dim=1).argmax(dim=1, keepdim=False)
output_2=output_2.cpu().clone()
target_2 = sample['label'][i].argmax(dim=1, keepdim=False)
target_2=target_2.cpu().clone();
hist = np.bincount(9 * target_2.reshape([-1]) + output_2.reshape([-1]),minlength=81).reshape(9, 9)
hists.append(hist);
hists_sum=np.sum(np.stack(hists, axis=0), axis=0)
for i in range(9):
for j in range(9):
print(hists_sum[i][j],end=' ')
print();
print();
tp=0;
tpfn=0;
tpfp=0;
f1score=0.0;
for i in range(1,9):
tp+=hists_sum[i][i].sum()
tpfn+=hists_sum[i,:].sum()
tpfp+=hists_sum[:,i].sum()
f1score=2*tp/(tpfn+tpfp)
test_loss/=len(test_data.get_loader().dataset)
print('\nTest set: {} Cases,Average loss: {:.4f}\n'.format(
len(test_data.get_loader().dataset),test_loss))
print("STN-iCNN tp=",tp)
print("STN-iCNN tpfp=",tpfp)
print("STN-iCNN tpfn=",tpfn)
print('\nTest set: {} Cases,F1 Score: {:.4f}\n'.format(
len(test_data.get_loader().dataset),f1score))
loss_list.append(test_loss.data.cpu().numpy());
f1_list.append(f1score);
if (UseF1):
if (f1score>bestf1):
bestf1=f1score
print("Best data Updata\n");
torch.save(model_stage2,"./preBestNet_stage2")
else:
if (test_loss<bestloss):
bestloss=test_loss
print("Best data Updata\n");
torch.save(model_stage2,"./preBestNet_stage2")
def printoutput():
model_stage2=torch.load("./preBestNet_stage2",map_location="cpu")
if (use_gpu):
model_stage2=model_stage2.to(device)
model_stage2.eval();
global bestloss,bestf1;
test_loss=0
hists=[]
k=0;
for sample in test_data.get_loader():
if (use_gpu):
for i in range(6):
sample['image'][i]=sample['image'][i].to(device)
sample['label'][i]=sample['label'][i].to(device)
stage2_label=model_stage2(sample['image'],None);
for i in range(6):
test_loss+=fun.cross_entropy(stage2_label[i],sample['label'][i].argmax(dim=1, keepdim=False)).data;
for j in range(sample['image'].shape[0]):
path=pre_stage2_output_path+'/aug'+'/'+test_data.get_namelist()[k+j];
if not os.path.exists(path):
os.makedirs(path);
image=TF.to_pil_image(sample['image'][i][j].unsqueeze(0).cpu());
image.save(path+'/'+test_data.get_namelist()[k+j]+'lbl0'+str(i)+'_img.jpg',quality=100);
image=TF.to_pil_image(sample['label'][i][j][1].unsqueeze(0).cpu());
image.save(path+'/'+test_data.get_namelist()[k+j]+'lbl0'+str(i)+'_label.jpg',quality=100);
image=torch.softmax(stage2_label[i][j].cpu(), dim=0).argmax(dim=0, keepdim=True);
image=torch.zeros(label_channel[i],81,81).scatter_(0, image, 1);
image=TF.to_pil_image(image[1].unsqueeze(0),mode="L");
image.save(path+'/'+test_data.get_namelist()[k+j]+'lbl0'+str(i)+'_train.jpg',quality=100);
output_2 = torch.softmax(stage2_label[i], dim=1).argmax(dim=1, keepdim=False)
output_2=output_2.cpu().clone()
target_2 = sample['label'][i].argmax(dim=1, keepdim=False)
target_2=target_2.cpu().clone();
hist = np.bincount(9 * target_2.reshape([-1]) + output_2.reshape([-1]),minlength=81).reshape(9, 9)
hists.append(hist);
k+=sample['image'][0].shape[0];
hists_sum=np.sum(np.stack(hists, axis=0), axis=0)
tp=0;
tpfn=0;
tpfp=0;
f1score=0.0;
for i in range(9):
for j in range(9):
print(hists_sum[i][j],end=' ')
print()
for i in range(1,9):
tp+=hists_sum[i][i].sum()
tpfn+=hists_sum[i,:].sum()
tpfp+=hists_sum[:,i].sum()
f1score=2*tp/(tpfn+tpfp)
test_loss/=len(test_data.get_loader().dataset)
print('\nPrintoutput Average loss: {:.4f}\n'.format(test_loss))
print("STN-iCNN stage2 tp=",tp)
print("STN-iCNN stage2 tpfp=",tpfp)
print("STN-iCNN tstage2 pfn=",tpfn)
print('\nPrintoutputF1 Score: {:.4f}\n'.format(f1score))
print("printoutput Finish");
def makeplt(title):
loss_list=np.load(loss_image_path+'\\loss_list_'+plttitle+'.npy')
loss_list=loss_list.tolist();
f1_list=np.load(loss_image_path+'\\f1_list_'+plttitle+'.npy')
f1_list=f1_list.tolist();
x_list=np.load(loss_image_path+'\\x_list_'+plttitle+'.npy')
x_list=x_list.tolist();
fig = plt.figure()
plt.title(title);
ax1 = fig.add_subplot(111)
ax1.plot(x_list, loss_list,'r',label="loss")
ax2 = ax1.twinx()
ax2.plot(x_list, f1_list,'b',label="f1_score")
ax1.set_xlabel("epoch")
ax1.set_ylabel("Loss")
ax2.set_ylabel("f1_score")
ax1.legend(loc=2);
ax2.legend(loc=4);
plt.savefig(loss_image_path+'\\loss_'+plttitle+'.jpg');
loss_list=[];
f1_list=[];
x_list=[];
print("use_gpu=",use_gpu)
if (use_gpu):
model_stage2=model_stage2.to(device)
optimizer_stage2=optim.Adam(model_stage2.parameters(),lr=0.001)
scheduler_stage2=optim.lr_scheduler.StepLR(optimizer_stage2, step_size=5, gamma=0.5)
Training=OnServer;
#Training=True;
plttitle="PreTrain_stage2"
if Training:
for epoch in range(epoch_num):
x_list.append(epoch);
train(epoch)
scheduler_stage2.step()
test(epoch)
torch.save(model_stage2,"./preNetdata_stage2")
'''
x_list_stage2=np.array(x_list)
np.save(loss_image_path+'\\x_list_'+plttitle+'.npy',x_list_stage2)
f1_list_stage2=np.array(f1_list)
np.save(loss_image_path+'\\f1_list_'+plttitle+'.npy',f1_list_stage2)
loss_list_stage2=np.array(loss_list)
np.save(loss_image_path+'\\loss_list_'+plttitle+'.npy',loss_list_stage2)
makeplt(plttitle);
'''
if (not OnServer):
printoutput()
print("FINISH!");