给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
示例 1:
输入:
Tree 1 Tree 2
1 2
/ \ / \
3 2 1 3
/ \ \
5 4 7
输出:
合并后的树:
3
/ \
4 5
/ \ \
5 4 7
注意: 合并必须从两个树的根节点开始。
- 可以使用前序、中序、后序的方法完成遍历
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
if not t1 and not t2:
return None
elif not t1:
return t2
elif not t2:
return t1
else:
t1.val += t2.val
t1.left = self.mergeTrees(t1.left, t2.left)
t1.right = self.mergeTrees(t1.right, t2.right)
return t1
- 层次遍历,使用栈存储待遍历节点;准确地说,是存储需要合并的节点pair
- 与常规循环遍历不同的是,存储的是tuple而不是单个元素/节点
n1, n2 = stack.pop()
也可以改为n1, n2 = stack.pop(0)
,只是处理的顺序有所区别
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
if not t1 or not t2:
return t1 or t2
else:
stack = [(t1, t2)]
while stack:
n1, n2 = stack.pop()
n1.val += n2.val
if n1.left:
if n2.left:
stack.append((n1.left, n2.left))
else:
if n2.left:
n1.left = n2.left
if n1.right:
if n2.right:
stack.append((n1.right, n2.right))
else:
if n2.right:
n1.right = n2.right
return t1