forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpickle.h
91 lines (82 loc) · 3.18 KB
/
pickle.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#pragma once
#include <ATen/core/ivalue.h>
#include <c10/util/ArrayRef.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <torch/csrc/jit/serialization/unpickler.h>
namespace torch {
namespace jit {
/// Pickle an IValue by calling a function to handle writing the data.
///
/// `writer` is a function that takes in a pointer to a chunk of memory and its
/// size and consumes it.
///
/// See `jit::pickle` for more details.
TORCH_API void pickle(
std::function<void(const char* data_start, size_t data_len)> writer,
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table = nullptr);
/// Save a `torch::IValue` in a format compatible with Python's `pickle` module
///
/// If present, `tensor_table` is a pointer to a table in which tensors that
/// are contained within `ivalue` are stored, and the bytes returned by the
/// pickler will only include references to these tensors in the table. This can
/// be used to keep the binary blob size small.
/// If not provided, tensors are stored in the same byte stream as the pickle
/// data, similar to `torch.save()` in eager Python.
///
/// Pickled values can be loaded in Python and C++:
/// \rst
/// .. code-block:: cpp
///
/// torch::IValue float_value(2.3);
///
/// // TODO: when tensors are stored in the pickle, delete this
/// std::vector<at::Tensor> tensor_table;
/// auto data = torch::jit::pickle(float_value, &tensor_table);
///
/// std::vector<torch::IValue> ivalues =
/// torch::jit::unpickle(data.data(), data.size());
///
/// .. code-block:: python
///
/// values = torch.load('data.pkl')
/// print(values)
///
/// \endrst
TORCH_API std::vector<char> pickle(
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table = nullptr);
/// Save a `torch::IValue` in a format that can be loaded by both
/// `torch::pickle_load` in C++ and `torch.load` in Python.
TORCH_API std::vector<char> pickle_save(const IValue& ivalue);
/// Deserialize a `torch::IValue` from bytes produced by either
/// `torch::pickle_save` in C++ or `torch.save` in Python
TORCH_API IValue pickle_load(const std::vector<char>& data);
/// `reader` is a function that takes in a size to read from some pickled
/// binary. `reader` should remember where it last read, and return
/// the number of bytes read.
/// See `torch::pickle` for details.
/// type_resolver is used to resolve any JIT type based on type str
TORCH_API IValue unpickle(
std::function<size_t(char*, size_t)> reader,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table,
c10::TypePtr (*type_parser)(const std::string&) =
Unpickler::defaultTypeParser);
/// Decode a chunk of memory containing pickled data into its `torch::IValue`s.
///
/// If any `torch::IValue`s in the pickled data are `Object`s, then a
/// `class_resolver` function must be provided.
///
/// See `torch::pickle` for details.
TORCH_API IValue unpickle(
const char* data,
size_t size,
TypeResolver type_resolver = nullptr,
c10::ArrayRef<at::Tensor> tensor_table = {},
c10::TypePtr (*type_parser)(const std::string&) =
Unpickler::defaultTypeParser);
} // namespace jit
} // namespace torch