forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx.cpp
242 lines (219 loc) · 7.34 KB
/
onnx.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#include <c10/util/irange.h>
#include <torch/csrc/jit/serialization/onnx.h>
#include <torch/csrc/onnx/onnx.h>
#include <sstream>
#include <string>
namespace torch::jit {
namespace {
namespace onnx_torch = ::torch::onnx;
namespace onnx = ::ONNX_NAMESPACE;
// Pretty printing for ONNX
constexpr char indent_char = ' ';
constexpr size_t indent_multiplier = 2;
std::string idt(size_t indent) {
return std::string(indent * indent_multiplier, indent_char);
}
std::string nlidt(size_t indent) {
return std::string("\n") + idt(indent);
}
void dump(const onnx::TensorProto& tensor, std::ostream& stream) {
stream << "TensorProto shape: [";
for (const auto i : c10::irange(tensor.dims_size())) {
stream << tensor.dims(i) << (i == tensor.dims_size() - 1 ? "" : " ");
}
stream << "]";
}
void dump(const onnx::TensorShapeProto& shape, std::ostream& stream) {
for (const auto i : c10::irange(shape.dim_size())) {
auto& dim = shape.dim(i);
if (dim.has_dim_value()) {
stream << dim.dim_value();
} else {
stream << "?";
}
stream << (i == shape.dim_size() - 1 ? "" : " ");
}
}
void dump(const onnx::TypeProto_Tensor& tensor_type, std::ostream& stream) {
stream << "Tensor dtype: ";
if (tensor_type.has_elem_type()) {
stream << tensor_type.elem_type();
} else {
stream << "None.";
}
stream << ", ";
stream << "Tensor dims: ";
if (tensor_type.has_shape()) {
dump(tensor_type.shape(), stream);
} else {
stream << "None.";
}
}
void dump(const onnx::TypeProto& type, std::ostream& stream);
void dump(const onnx::TypeProto_Optional& optional_type, std::ostream& stream) {
stream << "Optional<";
if (optional_type.has_elem_type()) {
dump(optional_type.elem_type(), stream);
} else {
stream << "None";
}
stream << ">";
}
void dump(const onnx::TypeProto_Sequence& sequence_type, std::ostream& stream) {
stream << "Sequence<";
if (sequence_type.has_elem_type()) {
dump(sequence_type.elem_type(), stream);
} else {
stream << "None";
}
stream << ">";
}
void dump(const onnx::TypeProto& type, std::ostream& stream) {
if (type.has_tensor_type()) {
dump(type.tensor_type(), stream);
} else if (type.has_sequence_type()) {
dump(type.sequence_type(), stream);
} else if (type.has_optional_type()) {
dump(type.optional_type(), stream);
} else {
stream << "None";
}
}
void dump(const onnx::ValueInfoProto& value_info, std::ostream& stream) {
stream << "{name: \"" << value_info.name() << "\", type:";
dump(value_info.type(), stream);
stream << "}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent);
void dump(
const onnx::AttributeProto& attr,
std::ostream& stream,
size_t indent) {
stream << "{ name: '" << attr.name() << "', type: ";
if (attr.has_f()) {
stream << "float, value: " << attr.f();
} else if (attr.has_i()) {
stream << "int, value: " << attr.i();
} else if (attr.has_s()) {
stream << "string, value: '" << attr.s() << "'";
} else if (attr.has_g()) {
stream << "graph, value:\n";
dump(attr.g(), stream, indent + 1);
stream << nlidt(indent);
} else if (attr.has_t()) {
stream << "tensor, value:";
dump(attr.t(), stream);
} else if (attr.floats_size()) {
stream << "floats, values: [";
for (const auto i : c10::irange(attr.floats_size())) {
stream << attr.floats(i) << (i == attr.floats_size() - 1 ? "" : " ");
}
stream << "]";
} else if (attr.ints_size()) {
stream << "ints, values: [";
for (const auto i : c10::irange(attr.ints_size())) {
stream << attr.ints(i) << (i == attr.ints_size() - 1 ? "" : " ");
}
stream << "]";
} else if (attr.strings_size()) {
stream << "strings, values: [";
for (const auto i : c10::irange(attr.strings_size())) {
stream << "'" << attr.strings(i) << "'"
<< (i == attr.strings_size() - 1 ? "" : " ");
}
stream << "]";
} else if (attr.tensors_size()) {
stream << "tensors, values: [";
for (auto& t : attr.tensors()) {
dump(t, stream);
}
stream << "]";
} else if (attr.graphs_size()) {
stream << "graphs, values: [";
for (auto& g : attr.graphs()) {
dump(g, stream, indent + 1);
}
stream << "]";
} else {
stream << "UNKNOWN";
}
stream << "}";
}
void dump(const onnx::NodeProto& node, std::ostream& stream, size_t indent) {
stream << "Node {type: \"" << node.op_type() << "\", inputs: [";
for (const auto i : c10::irange(node.input_size())) {
stream << node.input(i) << (i == node.input_size() - 1 ? "" : ",");
}
stream << "], outputs: [";
for (const auto i : c10::irange(node.output_size())) {
stream << node.output(i) << (i == node.output_size() - 1 ? "" : ",");
}
stream << "], attributes: [";
for (const auto i : c10::irange(node.attribute_size())) {
dump(node.attribute(i), stream, indent + 1);
stream << (i == node.attribute_size() - 1 ? "" : ",");
}
stream << "]}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent) {
stream << idt(indent) << "GraphProto {" << nlidt(indent + 1) << "name: \""
<< graph.name() << "\"" << nlidt(indent + 1) << "inputs: [";
for (const auto i : c10::irange(graph.input_size())) {
dump(graph.input(i), stream);
stream << (i == graph.input_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "outputs: [";
for (const auto i : c10::irange(graph.output_size())) {
dump(graph.output(i), stream);
stream << (i == graph.output_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "value_infos: [";
for (const auto i : c10::irange(graph.value_info_size())) {
dump(graph.value_info(i), stream);
stream << (i == graph.value_info_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "initializers: [";
for (const auto i : c10::irange(graph.initializer_size())) {
dump(graph.initializer(i), stream);
stream << (i == graph.initializer_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "nodes: [" << nlidt(indent + 2);
for (const auto i : c10::irange(graph.node_size())) {
dump(graph.node(i), stream, indent + 2);
if (i != graph.node_size() - 1) {
stream << "," << nlidt(indent + 2);
}
}
stream << nlidt(indent + 1) << "]\n" << idt(indent) << "}\n";
}
void dump(
const onnx::OperatorSetIdProto& operator_set_id,
std::ostream& stream) {
stream << "OperatorSetIdProto { domain: " << operator_set_id.domain()
<< ", version: " << operator_set_id.version() << "}";
}
void dump(const onnx::ModelProto& model, std::ostream& stream, size_t indent) {
stream << idt(indent) << "ModelProto {" << nlidt(indent + 1)
<< "producer_name: \"" << model.producer_name() << "\""
<< nlidt(indent + 1) << "domain: \"" << model.domain() << "\""
<< nlidt(indent + 1) << "doc_string: \"" << model.doc_string() << "\"";
if (model.has_graph()) {
stream << nlidt(indent + 1) << "graph:\n";
dump(model.graph(), stream, indent + 2);
}
if (model.opset_import_size()) {
stream << idt(indent + 1) << "opset_import: [";
for (auto& opset_imp : model.opset_import()) {
dump(opset_imp, stream);
}
stream << "],\n";
}
stream << idt(indent) << "}\n";
}
} // namespace
std::string prettyPrint(const ::ONNX_NAMESPACE::ModelProto& model) {
std::ostringstream ss;
dump(model, ss, 0);
return ss.str();
}
} // namespace torch::jit