forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_flop_counter.py
241 lines (188 loc) · 9.22 KB
/
test_flop_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Owner(s): ["module: unknown"]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_TORCHDYNAMO
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FLASH_ATTENTION
import torch.utils.flop_counter
import torch.nn.functional as F
import unittest
import functools
try:
from torchvision import models as torchvision_models
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
HAS_CUDA = torch.cuda.is_available()
def FlopCounterMode(*args, **kwargs):
return torch.utils.flop_counter.FlopCounterMode(*args, **kwargs, display=False)
def get_total_flops(mode):
return str(sum([v for _, v in mode.flop_counts["Global"].items()]))
def T(*shape, requires_grad=False):
return torch.randn(*shape, requires_grad=requires_grad)
@unittest.skipIf(TEST_WITH_TORCHDYNAMO, "torchdynamo doesn't work with __torch_dispatch__ right now")
class TestFlopCounter(TestCase):
def test_flop_counter_variety(self):
mode = FlopCounterMode()
mod = torch.nn.Linear(9, 10)
with mode:
torch.mm(T(4, 5), T(5, 6))
torch.addmm(T(4, 6), T(4, 5), T(5, 6), beta=0.5, alpha=0.5)
torch.matmul(T(5, 6), T(6, 7))
torch.einsum("ab,bc->ac", T(6, 7), T(7, 8))
mod(T(8, 9))
self.assertExpectedInline(get_total_flops(mode), """3012""")
def test_op(self):
mode = FlopCounterMode()
with mode:
torch.mm(T(4, 5), T(5, 6))
# 4 * 6 * 2 * 5 = 240
self.assertExpectedInline(get_total_flops(mode), """240""")
with mode:
torch.bmm(T(3, 4, 5), T(3, 5, 6))
# 3 * 4 * 6 * 2 * 5 = 720
self.assertExpectedInline(get_total_flops(mode), """720""")
with mode:
torch.addmm(T(4, 6), T(4, 5), T(5, 6))
torch.addmm(T(4, 1), T(4, 5), T(5, 6))
torch.addmm(T(6), T(4, 5), T(5, 6))
# 4 * 6 * 2 * 5 = 240
self.assertExpectedInline(get_total_flops(mode), """720""")
with mode:
torch.baddbmm(T(3, 4, 6), T(3, 4, 5), T(3, 5, 6))
# 3 * 4 * 6 * 2 * 5 = 720
self.assertExpectedInline(get_total_flops(mode), """720""")
with mode:
torch.conv2d(T(2, 3, 6, 6), T(6, 3, 4, 4), padding=1)
# out_image_size = 2 * 5 * 5
# kernel_size = 4 * 4
# c_out = 6
# c_in = 3
# out_image_size * kernel_size * c_out * 2 * c_in
# NB: I don't think this properly accounts for padding?
self.assertExpectedInline(get_total_flops(mode), """28800""")
with mode:
torch.conv1d(T(2, 3, 6), T(6, 3, 4), padding=1)
# out_image_size = 2 * 5
# kernel_size = 4
# c_out = 6
# c_in = 3
# out_image_size * kernel_size * c_out * 2 * c_in
# NB: I don't think this properly accounts for padding?
self.assertExpectedInline(get_total_flops(mode), """1440""")
def test_backward(self):
mode = FlopCounterMode()
with mode:
a = T(4, 5, requires_grad=True)
a = torch.mm(a, T(5, 6))
a = a.unsqueeze(0).expand(7, 4, 6)
a = torch.bmm(a, T(7, 6, 7))
a.sum().backward()
self.assertExpectedInline(get_total_flops(mode), """5184""")
def test_torchscript(self):
def foo(x):
return torch.mm(x, x)
mode = FlopCounterMode()
with mode:
foo(T(5, 5))
unscripted_flops = get_total_flops(mode)
ts_foo = torch.jit.script(foo)
with mode:
ts_foo(T(5, 5))
self.assertEqual(unscripted_flops, get_total_flops(mode))
def test_autograd_op(self):
class _CustomOp(torch.autograd.Function):
@staticmethod
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
return torch.mm(input, input)
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
return torch.mm(grad_output, grad_output) + torch.mm(grad_output, grad_output)
a = T(5, 5, requires_grad=True)
mode = FlopCounterMode()
with mode:
a = _CustomOp.apply(a)
a.sum().backward()
self.assertExpectedInline(get_total_flops(mode), """750""")
@skipIfNoTorchVision
def test_module(self):
resnet18 = torchvision_models.resnet18()
mode = FlopCounterMode(resnet18)
with mode:
a = T(1, 3, 224, 224, requires_grad=True)
resnet18(a).sum().backward()
self.assertExpectedInline(get_total_flops(mode), """10884440064""")
layer1_conv_flops = mode.flop_counts['ResNet.layer1'][torch.ops.aten.convolution]
layer1_conv_back_flops = mode.flop_counts['ResNet.layer1'][torch.ops.aten.convolution_backward]
self.assertExpectedInline(str(layer1_conv_flops), """924844032""")
self.assertExpectedInline(str(layer1_conv_back_flops), """1849688064""")
def test_custom(self):
mode = FlopCounterMode(custom_mapping={torch.ops.aten.add: lambda *args, out_shape: 5})
with mode:
a = T(4, 5)
a + a
self.assertExpectedInline(get_total_flops(mode), """5""")
def test_noop(self):
mode = FlopCounterMode()
with mode:
T(4, 5).cos()
@unittest.skipIf(not HAS_CUDA, "CUDA not available")
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware")
def test_sdpa(self):
batch_size = 4
n_heads = 8
seq_len_q = 128
seq_len_k = 256
head_dim = 64
head_dim_v = 64
dtype = torch.float16
torch.manual_seed(0)
def get_flops(batch_size, n_heads, seq_len_q, seq_len_k, head_dim, head_dim_v, dtype, backend, with_backward=False):
query = torch.randn(batch_size, n_heads, seq_len_q, head_dim, device='cuda', dtype=dtype, requires_grad=True)
key = torch.randn(batch_size, n_heads, seq_len_k, head_dim, device='cuda', dtype=dtype, requires_grad=True)
value = torch.randn(batch_size, n_heads, seq_len_k, head_dim_v, device='cuda', dtype=dtype, requires_grad=True)
if backend == "math":
backend = torch.backends.cuda.sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False)
elif backend == "flash":
backend = torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False)
elif backend == "mem_efficient":
backend = torch.backends.cuda.sdp_kernel(enable_flash=False, enable_math=False, enable_mem_efficient=True)
mode = FlopCounterMode()
with backend, mode:
out = F.scaled_dot_product_attention(query, key, value, dropout_p=0, is_causal=True)
if with_backward:
out.sum().backward()
return int(get_total_flops(mode))
# Sets seq_len_q == seq_len_k and dim_q == dim_v
run_uniform_flops = functools.partial(get_flops, batch_size, n_heads, seq_len_q, seq_len_q, head_dim, head_dim, dtype)
flops = [run_uniform_flops(backend, with_backward=False) for backend in ["math", "flash", "mem_efficient"]]
flops_fw_math, flops_fw_flash, flops_fw_efficient = flops
self.assertEqual(flops_fw_math, flops_fw_flash)
self.assertEqual(flops_fw_math, flops_fw_efficient)
self.assertExpectedInline(str(flops_fw_math), """134217728""")
flops = [run_uniform_flops(backend, with_backward=True) for backend in ["math", "flash", "mem_efficient"]]
flops_fw_bw_math, flops_fw_bw_flash, flops_fw_bw_efficient = flops
self.assertEqual(flops_fw_math * 3, flops_fw_bw_math)
self.assertEqual(flops_fw_math * 7 // 2, flops_fw_bw_flash)
self.assertEqual(flops_fw_bw_flash, flops_fw_bw_efficient)
run_nonuniform_flops = functools.partial(get_flops, batch_size, n_heads, seq_len_q, seq_len_k, head_dim, head_dim_v, dtype)
flops = [run_nonuniform_flops(backend, with_backward=False) for backend in ["math", "flash", "mem_efficient"]]
flops_fw_math, flops_fw_flash, flops_fw_efficient = flops
self.assertEqual(flops_fw_math, flops_fw_flash, flops_fw_efficient)
self.assertExpectedInline(str(flops_fw_math), """268435456""")
flops = [run_nonuniform_flops(backend, with_backward=True) for backend in ["math", "flash", "mem_efficient"]]
flops_fw_bw_math, flops_fw_bw_flash, flops_fw_bw_efficient = flops
self.assertExpectedInline(str(flops_fw_bw_math), """805306368""")
self.assertEqual(flops_fw_bw_flash, flops_fw_bw_efficient)
self.assertExpectedInline(str(flops_fw_bw_flash), """939524096""")
def test_hook_registration(self):
model = torch.nn.Linear(100, 100)
x = torch.randn(3, 100)
flop_counter = FlopCounterMode(model)
with flop_counter:
self.assertEqual(len(model._forward_pre_hooks), 1)
self.assertEqual(len(model._forward_hooks), 1)
model(x).sum().backward()
self.assertEqual(len(model._forward_pre_hooks), 0)
self.assertEqual(len(model._forward_hooks), 0)
if __name__ == '__main__':
run_tests()