forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconjugateGradientCudaGraphs.cu
396 lines (310 loc) · 13.1 KB
/
conjugateGradientCudaGraphs.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample implements a conjugate gradient solver on GPU
* using CUBLAS and CUSPARSE with CUDA Graphs
*
*/
// includes, system
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Using updated (v2) interfaces to cublas */
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <cusparse.h>
#include <cooperative_groups.h>
// Utilities and system includes
#include <helper_cuda.h> // helper function CUDA error checking and initialization
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
namespace cg = cooperative_groups;
const char *sSDKname = "conjugateGradientCudaGraphs";
#ifndef WITH_GRAPH
#define WITH_GRAPH 1
#endif
/* genTridiag: generate a random tridiagonal symmetric matrix */
void genTridiag(int *I, int *J, float *val, int N, int nz) {
I[0] = 0, J[0] = 0, J[1] = 1;
val[0] = (float)rand() / RAND_MAX + 10.0f;
val[1] = (float)rand() / RAND_MAX;
int start;
for (int i = 1; i < N; i++) {
if (i > 1) {
I[i] = I[i - 1] + 3;
} else {
I[1] = 2;
}
start = (i - 1) * 3 + 2;
J[start] = i - 1;
J[start + 1] = i;
if (i < N - 1) {
J[start + 2] = i + 1;
}
val[start] = val[start - 1];
val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
if (i < N - 1) {
val[start + 2] = (float)rand() / RAND_MAX;
}
}
I[N] = nz;
}
__global__ void initVectors(float *rhs, float *x, int N) {
size_t gid = blockIdx.x * blockDim.x + threadIdx.x;
for (size_t i = gid; i < N; i += gridDim.x * blockDim.x) {
rhs[i] = 1.0;
x[i] = 0.0;
}
}
__global__ void r1_div_x(float *r1, float *r0, float *b) {
int gid = blockIdx.x * blockDim.x + threadIdx.x;
if (gid == 0) {
b[0] = r1[0] / r0[0];
}
}
__global__ void a_minus(float *a, float *na) {
int gid = blockIdx.x * blockDim.x + threadIdx.x;
if (gid == 0) {
na[0] = -(a[0]);
}
}
int main(int argc, char **argv) {
int N = 0, nz = 0, *I = NULL, *J = NULL;
float *val = NULL;
const float tol = 1e-5f;
const int max_iter = 10000;
float *x;
float *rhs;
float r1;
int *d_col, *d_row;
float *d_val, *d_x;
float *d_r, *d_p, *d_Ax;
int k;
float alpha, beta, alpham1;
cudaStream_t stream1, streamForGraph;
// This will pick the best possible CUDA capable device
cudaDeviceProp deviceProp;
int devID = findCudaDevice(argc, (const char **)argv);
if (devID < 0) {
printf("exiting...\n");
exit(EXIT_SUCCESS);
}
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
// Statistics about the GPU device
printf(
"> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);
/* Generate a random tridiagonal symmetric matrix in CSR format */
N = 1048576;
nz = (N - 2) * 3 + 4;
I = (int *)malloc(sizeof(int) * (N + 1));
J = (int *)malloc(sizeof(int) * nz);
val = (float *)malloc(sizeof(float) * nz);
genTridiag(I, J, val, N, nz);
x = (float *)malloc(sizeof(float) * N);
rhs = (float *)malloc(sizeof(float) * N);
for (int i = 0; i < N; i++) {
rhs[i] = 1.0;
x[i] = 0.0;
}
/* Get handle to the CUBLAS context */
cublasHandle_t cublasHandle = 0;
cublasStatus_t cublasStatus;
cublasStatus = cublasCreate(&cublasHandle);
checkCudaErrors(cublasStatus);
/* Get handle to the CUSPARSE context */
cusparseHandle_t cusparseHandle = 0;
cusparseStatus_t cusparseStatus;
cusparseStatus = cusparseCreate(&cusparseHandle);
checkCudaErrors(cusparseStatus);
checkCudaErrors(cudaStreamCreate(&stream1));
checkCudaErrors(cudaMalloc((void **)&d_col, nz * sizeof(int)));
checkCudaErrors(cudaMalloc((void **)&d_row, (N + 1) * sizeof(int)));
checkCudaErrors(cudaMalloc((void **)&d_val, nz * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_x, N * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_r, N * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_p, N * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_Ax, N * sizeof(float)));
float *d_r1, *d_r0, *d_dot, *d_a, *d_na, *d_b;
checkCudaErrors(cudaMalloc((void **)&d_r1, sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_r0, sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_dot, sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_a, sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_na, sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(float)));
cusparseMatDescr_t descr = 0;
checkCudaErrors(cusparseCreateMatDescr(&descr));
checkCudaErrors(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL));
checkCudaErrors(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO));
int numBlocks = 0, blockSize = 0;
checkCudaErrors(
cudaOccupancyMaxPotentialBlockSize(&numBlocks, &blockSize, initVectors));
checkCudaErrors(cudaMemcpyAsync(d_col, J, nz * sizeof(int),
cudaMemcpyHostToDevice, stream1));
checkCudaErrors(cudaMemcpyAsync(d_row, I, (N + 1) * sizeof(int),
cudaMemcpyHostToDevice, stream1));
checkCudaErrors(cudaMemcpyAsync(d_val, val, nz * sizeof(float),
cudaMemcpyHostToDevice, stream1));
initVectors<<<numBlocks, blockSize, 0, stream1>>>(d_r, d_x, N);
alpha = 1.0;
alpham1 = -1.0;
beta = 0.0;
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
checkCudaErrors(
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
&alpha, descr, d_val, d_row, d_col, d_x, &beta, d_Ax));
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1));
checkCudaErrors(
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE));
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
k = 1;
// First Iteration when k=1 starts
checkCudaErrors(cublasScopy(cublasHandle, N, d_r, 1, d_p, 1));
checkCudaErrors(
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
&alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
cudaMemcpyDeviceToDevice, stream1));
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
checkCudaErrors(cudaMemcpyAsync(&r1, d_r1, sizeof(float),
cudaMemcpyDeviceToHost, stream1));
checkCudaErrors(cudaStreamSynchronize(stream1));
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
// First Iteration when k=1 ends
k++;
#if WITH_GRAPH
cudaGraph_t initGraph;
checkCudaErrors(cudaStreamCreate(&streamForGraph));
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
checkCudaErrors(cudaStreamBeginCapture(stream1, cudaStreamCaptureModeGlobal));
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b);
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1));
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST);
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1));
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
checkCudaErrors(
cusparseSetPointerMode(cusparseHandle, CUSPARSE_POINTER_MODE_HOST));
checkCudaErrors(
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
&alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
checkCudaErrors(cudaMemsetAsync(d_dot, 0, sizeof(float), stream1));
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
cudaMemcpyDeviceToDevice, stream1));
checkCudaErrors(cudaMemsetAsync(d_r1, 0, sizeof(float), stream1));
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float),
cudaMemcpyDeviceToHost, stream1));
checkCudaErrors(cudaStreamEndCapture(stream1, &initGraph));
cudaGraphExec_t graphExec;
checkCudaErrors(cudaGraphInstantiate(&graphExec, initGraph, NULL, NULL, 0));
#endif
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
while (r1 > tol * tol && k <= max_iter) {
#if WITH_GRAPH
checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph));
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
#else
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b);
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1));
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST);
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1));
checkCudaErrors(cusparseScsrmv(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha,
descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a);
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1));
a_minus<<<1, 1, 0, stream1>>>(d_a, d_na);
checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1));
checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float),
cudaMemcpyDeviceToDevice, stream1));
checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1));
checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float),
cudaMemcpyDeviceToHost, stream1));
checkCudaErrors(cudaStreamSynchronize(stream1));
#endif
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
k++;
}
#if WITH_GRAPH
checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float),
cudaMemcpyDeviceToHost, streamForGraph));
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
#else
checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float),
cudaMemcpyDeviceToHost, stream1));
checkCudaErrors(cudaStreamSynchronize(stream1));
#endif
float rsum, diff, err = 0.0;
for (int i = 0; i < N; i++) {
rsum = 0.0;
for (int j = I[i]; j < I[i + 1]; j++) {
rsum += val[j] * x[J[j]];
}
diff = fabs(rsum - rhs[i]);
if (diff > err) {
err = diff;
}
}
#if WITH_GRAPH
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphDestroy(initGraph));
checkCudaErrors(cudaStreamDestroy(streamForGraph));
#endif
checkCudaErrors(cudaStreamDestroy(stream1));
cusparseDestroy(cusparseHandle);
cublasDestroy(cublasHandle);
free(I);
free(J);
free(val);
free(x);
free(rhs);
cudaFree(d_col);
cudaFree(d_row);
cudaFree(d_val);
cudaFree(d_x);
cudaFree(d_r);
cudaFree(d_p);
cudaFree(d_Ax);
printf("Test Summary: Error amount = %f\n", err);
exit((k <= max_iter) ? 0 : 1);
}