forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resize_convert_main.cpp
448 lines (369 loc) · 14.5 KB
/
resize_convert_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
NVIDIA HW Decoder, both dGPU and Tegra, normally outputs NV12 pitch format
frames. For the inference using TensorRT, the input frame needs to be BGR planar
format with possibly different size. So, conversion and resizing from NV12 to
BGR planar is usually required for the inference following decoding.
This CUDA code is to provide a reference implementation for conversion and
resizing.
Limitaion
=========
NV12resize needs the height to be a even value.
Note
====
Resize function needs the pitch of image buffer to be 32 alignment.
Run
====
./NV12toBGRandResize
OR
./NV12toBGRandResize -input=data/test1920x1080.nv12 -width=1920 -height=1080 \
-dst_width=640 -dst_height=480 -batch=40 -device=0
*/
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cassert>
#include <fstream>
#include <iostream>
#include <memory>
#include "resize_convert.h"
#include "utils.h"
#define TEST_LOOP 20
typedef struct _nv12_to_bgr24_context_t {
int width;
int height;
int pitch;
int dst_width;
int dst_height;
int dst_pitch;
int batch;
int device; // cuda device ID
char *input_nv12_file;
int ctx_pitch; // the value will be suitable for Texture memroy.
int ctx_heights; // the value will be even.
} nv12_to_bgr24_context;
nv12_to_bgr24_context g_ctx;
static void printHelp(const char *app_name) {
std::cout << "Usage:" << app_name << " [options]\n\n";
std::cout << "OPTIONS:\n";
std::cout << "\t-h,--help\n\n";
std::cout << "\t-input=nv12file nv12 input file\n";
std::cout
<< "\t-width=width input nv12 image width, <1 -- 4096>\n";
std::cout
<< "\t-height=height input nv12 image height, <1 -- 4096>\n";
std::cout
<< "\t-pitch=pitch(optional) input nv12 image pitch, <0 -- 4096>\n";
std::cout
<< "\t-dst_width=width output BGR image width, <1 -- 4096>\n";
std::cout
<< "\t-dst_height=height output BGR image height, <1 -- 4096>\n";
std::cout
<< "\t-dst_pitch=pitch(optional) output BGR image pitch, <0 -- 4096>\n";
std::cout
<< "\t-batch=batch process frames count, <1 -- 4096>\n\n";
std::cout
<< "\t-device=device_num(optional) cuda device number, <0 -- 4096>\n\n";
return;
}
int parseCmdLine(int argc, char *argv[]) {
char **argp = (char **)argv;
char *arg = (char *)argv[0];
memset(&g_ctx, 0, sizeof(g_ctx));
if ((arg && (!strcmp(arg, "-h") || !strcmp(arg, "--help")))) {
printHelp(argv[0]);
return -1;
}
if (argc == 1) {
// Run using default arguments
g_ctx.input_nv12_file = sdkFindFilePath("test1920x1080.nv12", argv[0]);
if (g_ctx.input_nv12_file == NULL) {
printf("Cannot find input file test1920x1080.nv12\n Exiting\n");
return EXIT_FAILURE;
}
g_ctx.width = 1920;
g_ctx.height = 1080;
g_ctx.dst_width = 640;
g_ctx.dst_height = 480;
g_ctx.batch = 24;
} else if (argc > 1) {
if (checkCmdLineFlag(argc, (const char **)argv, "width")) {
g_ctx.width = getCmdLineArgumentInt(argc, (const char **)argv, "width");
}
if (checkCmdLineFlag(argc, (const char **)argv, "height")) {
g_ctx.height = getCmdLineArgumentInt(argc, (const char **)argv, "height");
}
if (checkCmdLineFlag(argc, (const char **)argv, "pitch")) {
g_ctx.pitch = getCmdLineArgumentInt(argc, (const char **)argv, "pitch");
}
if (checkCmdLineFlag(argc, (const char **)argv, "input")) {
getCmdLineArgumentString(argc, (const char **)argv, "input",
(char **)&g_ctx.input_nv12_file);
}
if (checkCmdLineFlag(argc, (const char **)argv, "dst_width")) {
g_ctx.dst_width =
getCmdLineArgumentInt(argc, (const char **)argv, "dst_width");
}
if (checkCmdLineFlag(argc, (const char **)argv, "dst_height")) {
g_ctx.dst_height =
getCmdLineArgumentInt(argc, (const char **)argv, "dst_height");
}
if (checkCmdLineFlag(argc, (const char **)argv, "dst_pitch")) {
g_ctx.dst_pitch =
getCmdLineArgumentInt(argc, (const char **)argv, "dst_pitch");
}
if (checkCmdLineFlag(argc, (const char **)argv, "batch")) {
g_ctx.batch = getCmdLineArgumentInt(argc, (const char **)argv, "batch");
}
}
g_ctx.device = findCudaDevice(argc, (const char **)argv);
if ((g_ctx.width == 0) || (g_ctx.height == 0) || (g_ctx.dst_width == 0) ||
(g_ctx.dst_height == 0) || !g_ctx.input_nv12_file) {
printHelp(argv[0]);
return -1;
}
if (g_ctx.pitch == 0) g_ctx.pitch = g_ctx.width;
if (g_ctx.dst_pitch == 0) g_ctx.dst_pitch = g_ctx.dst_width;
return 0;
}
/*
load nv12 yuvfile data into GPU device memory with batch of copy
*/
static int loadNV12Frame(unsigned char *d_inputNV12) {
unsigned char *pNV12FrameData;
unsigned char *d_nv12;
int frameSize;
std::ifstream nv12File(g_ctx.input_nv12_file, std::ifstream::in | std::ios::binary);
if (!nv12File.is_open()) {
std::cerr << "Can't open files\n";
return -1;
}
frameSize = g_ctx.pitch * g_ctx.ctx_heights;
#if USE_UVM_MEM
pNV12FrameData = d_inputNV12;
#else
pNV12FrameData = (unsigned char *)malloc(frameSize);
if (pNV12FrameData == NULL) {
std::cerr << "Failed to malloc pNV12FrameData\n";
return -1;
}
#endif
nv12File.read((char *)pNV12FrameData, frameSize);
if (nv12File.gcount() < frameSize) {
std::cerr << "can't get one frame!\n";
return -1;
}
#if USE_UVM_MEM
// Prefetch to GPU for following GPU operation
cudaStreamAttachMemAsync(NULL, pNV12FrameData, 0, cudaMemAttachGlobal);
#endif
// expand one frame to multi frames for batch processing
d_nv12 = d_inputNV12;
for (int i = 0; i < g_ctx.batch; i++) {
checkCudaErrors(cudaMemcpy2D((void *)d_nv12, g_ctx.ctx_pitch,
pNV12FrameData, g_ctx.width, g_ctx.width,
g_ctx.ctx_heights, cudaMemcpyHostToDevice));
d_nv12 += g_ctx.ctx_pitch * g_ctx.ctx_heights;
}
#if (USE_UVM_MEM == 0)
free(pNV12FrameData);
#endif
nv12File.close();
return 0;
}
/*
1. resize interlace nv12 to target size
2. convert nv12 to bgr 3 progressive planars
*/
void nv12ResizeAndNV12ToBGR(unsigned char *d_inputNV12) {
unsigned char *d_resizedNV12;
float *d_outputBGR;
int size;
char filename[40];
/* allocate device memory for resized nv12 output */
size = g_ctx.dst_width * ceil(g_ctx.dst_height * 3.0f / 2.0f) * g_ctx.batch *
sizeof(unsigned char);
checkCudaErrors(cudaMalloc((void **)&d_resizedNV12, size));
/* allocate device memory for bgr output */
size = g_ctx.dst_pitch * g_ctx.dst_height * 3 * g_ctx.batch * sizeof(float);
checkCudaErrors(cudaMalloc((void **)&d_outputBGR, size));
cudaStream_t stream;
checkCudaErrors(cudaStreamCreate(&stream));
/* create cuda event handles */
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
float elapsedTime = 0.0f;
/* resize interlace nv12 */
cudaEventRecord(start, 0);
for (int i = 0; i < TEST_LOOP; i++) {
resizeNV12Batch(d_inputNV12, g_ctx.ctx_pitch, g_ctx.width, g_ctx.height,
d_resizedNV12, g_ctx.dst_width, g_ctx.dst_width,
g_ctx.dst_height, g_ctx.batch);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf(
" CUDA resize nv12(%dx%d --> %dx%d), batch: %d,"
" average time: %.3f ms ==> %.3f ms/frame\n",
g_ctx.width, g_ctx.height, g_ctx.dst_width, g_ctx.dst_height, g_ctx.batch,
(elapsedTime / (TEST_LOOP * 1.0f)),
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
sprintf(filename, "resized_nv12_%dx%d", g_ctx.dst_width, g_ctx.dst_height);
/* convert nv12 to bgr 3 progressive planars */
cudaEventRecord(start, 0);
for (int i = 0; i < TEST_LOOP; i++) {
nv12ToBGRplanarBatch(d_resizedNV12, g_ctx.dst_pitch, // intput
d_outputBGR,
g_ctx.dst_pitch * sizeof(float), // output
g_ctx.dst_width, g_ctx.dst_height, // output
g_ctx.batch, 0);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf(
" CUDA convert nv12(%dx%d) to bgr(%dx%d), batch: %d,"
" average time: %.3f ms ==> %.3f ms/frame\n",
g_ctx.dst_width, g_ctx.dst_height, g_ctx.dst_width, g_ctx.dst_height,
g_ctx.batch, (elapsedTime / (TEST_LOOP * 1.0f)),
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
sprintf(filename, "converted_bgr_%dx%d", g_ctx.dst_width, g_ctx.dst_height);
dumpBGR(d_outputBGR, g_ctx.dst_pitch, g_ctx.dst_width, g_ctx.dst_height,
g_ctx.batch, (char *)"t1", filename);
/* release resources */
checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));
checkCudaErrors(cudaStreamDestroy(stream));
checkCudaErrors(cudaFree(d_resizedNV12));
checkCudaErrors(cudaFree(d_outputBGR));
}
/*
1. convert nv12 to bgr 3 progressive planars
2. resize bgr 3 planars to target size
*/
void nv12ToBGRandBGRresize(unsigned char *d_inputNV12) {
float *d_bgr;
float *d_resizedBGR;
int size;
char filename[40];
/* allocate device memory for bgr output */
size = g_ctx.ctx_pitch * g_ctx.height * 3 * g_ctx.batch * sizeof(float);
checkCudaErrors(cudaMalloc((void **)&d_bgr, size));
/* allocate device memory for resized bgr output */
size = g_ctx.dst_width * g_ctx.dst_height * 3 * g_ctx.batch * sizeof(float);
checkCudaErrors(cudaMalloc((void **)&d_resizedBGR, size));
cudaStream_t stream;
checkCudaErrors(cudaStreamCreate(&stream));
/* create cuda event handles */
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
float elapsedTime = 0.0f;
/* convert interlace nv12 to bgr 3 progressive planars */
cudaEventRecord(start, 0);
cudaDeviceSynchronize();
for (int i = 0; i < TEST_LOOP; i++) {
nv12ToBGRplanarBatch(d_inputNV12, g_ctx.ctx_pitch, d_bgr,
g_ctx.ctx_pitch * sizeof(float), g_ctx.width,
g_ctx.height, g_ctx.batch, 0);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf(
" CUDA convert nv12(%dx%d) to bgr(%dx%d), batch: %d,"
" average time: %.3f ms ==> %.3f ms/frame\n",
g_ctx.width, g_ctx.height, g_ctx.width, g_ctx.height, g_ctx.batch,
(elapsedTime / (TEST_LOOP * 1.0f)),
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
sprintf(filename, "converted_bgr_%dx%d", g_ctx.width, g_ctx.height);
/* resize bgr 3 progressive planars */
cudaEventRecord(start, 0);
for (int i = 0; i < TEST_LOOP; i++) {
resizeBGRplanarBatch(d_bgr, g_ctx.ctx_pitch, g_ctx.width, g_ctx.height,
d_resizedBGR, g_ctx.dst_width, g_ctx.dst_width,
g_ctx.dst_height, g_ctx.batch);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf(
" CUDA resize bgr(%dx%d --> %dx%d), batch: %d,"
" average time: %.3f ms ==> %.3f ms/frame\n",
g_ctx.width, g_ctx.height, g_ctx.dst_width, g_ctx.dst_height, g_ctx.batch,
(elapsedTime / (TEST_LOOP * 1.0f)),
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
memset(filename, 0, sizeof(filename));
sprintf(filename, "resized_bgr_%dx%d", g_ctx.dst_width, g_ctx.dst_height);
dumpBGR(d_resizedBGR, g_ctx.dst_pitch, g_ctx.dst_width, g_ctx.dst_height,
g_ctx.batch, (char *)"t2", filename);
/* release resources */
checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));
checkCudaErrors(cudaStreamDestroy(stream));
checkCudaErrors(cudaFree(d_bgr));
checkCudaErrors(cudaFree(d_resizedBGR));
}
int main(int argc, char *argv[]) {
unsigned char *d_inputNV12;
if (parseCmdLine(argc, argv) < 0) return EXIT_FAILURE;
g_ctx.ctx_pitch = g_ctx.width;
int ctx_alignment = 32;
g_ctx.ctx_pitch += (g_ctx.ctx_pitch % ctx_alignment != 0)
? (ctx_alignment - g_ctx.ctx_pitch % ctx_alignment)
: 0;
g_ctx.ctx_heights = ceil(g_ctx.height * 3.0f / 2.0f);
/* load nv12 yuv data into d_inputNV12 with batch of copies */
#if USE_UVM_MEM
checkCudaErrors(cudaMallocManaged(
(void **)&d_inputNV12,
(g_ctx.ctx_pitch * g_ctx.ctx_heights * g_ctx.batch), cudaMemAttachHost));
printf("\nUSE_UVM_MEM\n");
#else
checkCudaErrors(
cudaMalloc((void **)&d_inputNV12,
(g_ctx.ctx_pitch * g_ctx.ctx_heights * g_ctx.batch)));
#endif
if (loadNV12Frame(d_inputNV12)) {
std::cerr << "failed to load batch data!\n";
return EXIT_FAILURE;
}
/* firstly resize nv12, then convert nv12 to bgr */
printf("\nTEST#1:\n");
nv12ResizeAndNV12ToBGR(d_inputNV12);
/* first convert nv12 to bgr, then resize bgr */
printf("\nTEST#2:\n");
nv12ToBGRandBGRresize(d_inputNV12);
checkCudaErrors(cudaFree(d_inputNV12));
return EXIT_SUCCESS;
}