-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex.html
370 lines (338 loc) · 15.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="A plug-and-play module leveraging detection outputs as features to boost the performance crowd analysis.">
<meta name="keywords" content="Crowd Analysis, Object Detection">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Boosting Detection in Crowd Analysis via Underutilized Output Features</title>
<!-- Global site tag (gtag.js) - Google Analytics -->
<!-- <script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script> -->
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<!-- <link rel="icon" href="./static/images/favicon.svg"> -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<a class="navbar-item" href="https://fredfyyang.github.io/">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<!-- <a class="navbar-item" href="https://hypernerf.github.io">
HyperNeRF
</a>
<a class="navbar-item" href="https://nerfies.github.io">
Nerfies
</a>
<a class="navbar-item" href="https://latentfusion.github.io">
LatentFusion
</a>
<a class="navbar-item" href="https://photoshape.github.io">
PhotoShape
</a> -->
</div>
</div>
</div>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Boosting Detection in Crowd Analysis via Underutilized Output Features</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="">Shaokai Wu</a><sup>1*</sup>,</span>
<span class="author-block">
<a href="https://fredfyyang.github.io/">Fengyu Yang</a><sup>2*</sup></span>
<!-- <span class="author-block">
<a href="https://jonbarron.info">Jonathan T. Barron</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="http://sofienbouaziz.com">Sofien Bouaziz</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://www.danbgoldman.com">Dan B Goldman</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://homes.cs.washington.edu/~seitz/">Steven M. Seitz</a><sup>1,2</sup>,
</span>
<span class="author-block">
<a href="http://www.ricardomartinbrualla.com">Ricardo Martin-Brualla</a><sup>2</sup>
</span> -->
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Jilin University,</span>
<span class="author-block"><sup>2</sup>University of Michigan</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup></sup>*joint first authorship</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://openaccess.thecvf.com/content/CVPR2023/papers/Wu_Boosting_Detection_in_Crowd_Analysis_via_Underutilized_Output_Features_CVPR_2023_paper.pdf"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- <span class="link-block">
<a href="https://arxiv.org/abs/2011.12948"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span> -->
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/wskingdom/Crowd-Hat"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Dataset Link. -->
<!-- <span class="link-block">
<a href="https://github.com/google/nerfies/releases/tag/0.1"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Data</span>
</a> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- <section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video id="teaser" autoplay muted loop playsinline height="100%">
<source src="./static/videos/teaser.mp4"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
<span class="dnerf">Nerfies</span> turns selfie videos from your phone into
free-viewpoint
portraits.
</h2>
</div>
</div>
</section> -->
<!-- <section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img src="static/images/teaser-v5.png" alt="Vision2Touch Teaser">
<h2 class="subtitle has-text-centered">
We generate and manipulate images via touch.
</h2>
</div>
</div>
</section> -->
<section class="hero is-light is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item item-steve">
<video poster="" id="steve" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/scene.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-chair-tp">
<video poster="" id="chair-tp" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/scene.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-shiba">
<video poster="" id="shiba" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/scene.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-fullbody">
<video poster="" id="fullbody" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/scene.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-blueshirt">
<video poster="" id="blueshirt" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/scene.mp4"
type="video/mp4">
</video>
</div>
<!-- <div class="item item-mask">
<video poster="" id="mask" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/mask.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-coffee">
<video poster="" id="coffee" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/coffee.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-toby">
<video poster="" id="toby" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/toby2.mp4"
type="video/mp4">
</video>
</div> -->
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Detection-based methods have been viewed unfavorably in crowd analysis for their poor performance in dense crowds. However, we argue that their potential has been underestimated as some crucial information for crowd analysis is inherent in the detection pipeline while never utilized. In particular, the area size and confidence score of output proposals and bounding boxes indicate the scale and density of the crowd. Thus, we propose a Crowd Hat structure on top of detection to leverage these underutilized output features. Specifically, we first introduce a mixed 2D-1D compression to refine output features and obtain the spatial and numerical distribution of these crowd-specific information. Based on these features, we further propose region-adaptive NMS thresholds and a decouple-then-align paradigm that successfully addresses drawbacks in detection-based methods. We conduct extensive evaluations on various crowd analysis tasks of crowd counting, localization, and detection, showing our approach can be easily adapted to different detection methods while achieving state-of-the-art performance.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
<!-- Paper video. -->
<!-- <div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe src="https://www.youtube.com/embed/MrKrnHhk8IA?rel=0&showinfo=0"
frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</div>
</div>
</div> -->
<!--/ Paper video. -->
</div>
<div class="container is-max-desktop">
<!-- Output Features -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Output Features</h2>
<div class="content has-text-justified">
<p>
In our paper, we define detection outputs as the predicted bounding boxes and proposals from the detection network. We find these outputs convey abundant crowd-specific information, making them valuable assets for crowd analysis tasks. In particular, we adopt two output features "area size" and "confidence score" from detection outputs. Compared to feature maps extracted from convolution layers (CNN features), output features focus mostly on humans, the foreground of the image, which are considered relatively "pure" features for crowd analysis tasks. We show visualizations of these features below.
</p>
<img src="static/images/features.png" alt="Output features">
</div>
</div>
</div>
<!--/ Output Features -->
<!-- Output Features -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Pipeline</h2>
<div class="content has-text-justified">
<p>
We first introduce a mixed 2D-1D compression to refine both spatial and numerical distribution of output features from the detection pipeline. To make use of these features, we then propose a NMS decoder to learn region-adaptive NMS thresholds, which effectively reduces a large number of false positives under low-density regions and false negatives under high-density regions. Furthermore, we introduce a decouple-then-align paradigm to improve counting performance by first directly regressing the crowd count from output features and then use this predicted count to guide the bounding box selection.
</p>
<img src="static/images/pipeline.png" alt="Pipeline">
</div>
</div>
</div>
<!--/ Output Features -->
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@InProceedings{Wu_2023_boosting,
author = {Wu, Shaokai and Yang, Fengyu},
title = {Boosting Detection in Crowd Analysis via Underutilized Output Features},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {15609-15618}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link"
href="./static/videos/nerfies_paper.pdf">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/keunhong" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
The webpage templage was adopted from <a
href="https://github.com/nerfies/nerfies.github.io">here</a>.</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>