forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.cpp
68 lines (58 loc) · 2.25 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include "utils.h"
// Load weights from files shared with TensorRT samples.
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file)
{
std::cout << "Loading weights: " << file << std::endl;
std::cout << "Model weight is large, it will take some time." << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{ DataType::kFLOAT, nullptr, 0 };
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
std::cout << "Finish load weight" << std::endl;
return weightMap;
}
cv::RotatedRect expandBox(const cv::RotatedRect& inBox, float ratio)
{
cv::Size size = inBox.size;
int neww = int(size.width * ratio);
int newh = int(size.height * ratio);
return cv::RotatedRect(inBox.center, cv::Size(neww, newh), inBox.angle);
}
void drawRects(cv::Mat& image, std::vector<cv::RotatedRect> boxes, float stride, float ratio_h, float ratio_w, float expand_ratio)
{
cv::Point2f rect[4];
for (unsigned int i = 0; i < boxes.size(); i++)
{
cv::RotatedRect box = boxes[i];
cv::RotatedRect expandbox = expandBox(box, expand_ratio);
expandbox.points(rect);
for (auto j = 0; j < 4; j++)
{
cv::line(image, cv::Point{ int(rect[j].x / ratio_w * stride), int(rect[j].y / ratio_h * stride) }, cv::Point{ int(rect[(j + 1) % 4].x / ratio_w * stride), int(rect[(j + 1) % 4].y / ratio_h * stride) }, cv::Scalar(0, 0, 255), 2, 8);
}
}
}