-
Notifications
You must be signed in to change notification settings - Fork 39
/
sdg1.R
567 lines (507 loc) · 23.4 KB
/
sdg1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
library(ggplot2)
library(dplyr)
library(tidyr)
library(readxl)
library(stringr)
library(forcats)
library(gtable)
library(countrycode)
library(extrafont)
library(wbgdata)
library(wbgcharts)
library(wbgmaps)
library(wbggeo)
source("styles.R")
fig_sdg1_income_histogram_poverty <- function(years = c(1990, 2013), region = "WLD") {
df <- read_excel("inputs/sdg1/SDG1_f1_global_dist_histogram.xlsx")
df <- df %>%
filter(regioncode == region) %>%
select(year, povertyline, people, p_label) %>%
filter(year %in% years) %>%
mutate(people = people * 1e6) %>% # people cols are in millions
mutate(p_label = recode(p_label,
".5-1" = "0.5-1",
"1-1.9" = "1-1.90",
"1.9-4" = "1.90-4"
))
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>%
mutate(p_label = endashify(p_label)) %>% # use en-dashes for display
mutate(p_label = fct_reorder(p_label, as.numeric(povertyline)))
ggplot(df, aes(p_label, people, fill = (povertyline <= 1.90))) +
geom_col() +
scale_y_continuous(labels = billions()) +
scale_fill_manual(
values = c(
`FALSE` = style$colors$spot.secondary.light,
`TRUE` = style$colors$spot.primary
)
) +
xlab("Income or consumption per day (2011 PPP $)") +
facet_wrap(~ year, ncol = 1) +
style$theme() +
style$theme_x_title()
},
title = "Ending extreme poverty is at the heart of the SDG agenda. Between 1990 and 2013 the number of people living below $1.90 a day fell by over 1 billion.",
subtitle = wbg_name(indicator = "People", denom = "billions"),
source = "Source: World Bank PovcalNet (database). http://iresearch.worldbank.org/PovcalNet/home.aspx"
)
}
fig_sdg1_poor_population_area_chart <- function(years = c(1990, 2013)) {
df <- read_excel("inputs/sdg1/SDG1_f2_global_dist.xls")
df <- df %>%
filter(year %in% years, regioncid != "WLD") %>%
mutate(population = population * 1e6) %>% # population is in millions
mutate(poverty = hc, not_poverty = (1 - hc)) %>%
select(year, regioncid, population, poverty, not_poverty) %>%
rename(iso3c = regioncid)
figure(
data = df,
plot = function(df, style = style_atlas()) {
# Arrange data ascending in poor % in first year
df <- df %>%
mutate(iso3c = fct_reorder2(iso3c, year == min(years), poverty)) %>%
arrange(year, iso3c)
# Generate rectangle bounds for this marimekko-style plot
df <- df %>%
group_by(year) %>%
mutate(x_max = cumsum(population)) %>%
mutate(x_min = x_max - population) %>%
ungroup()
df <- df %>%
gather(indicatorID, value, c(poverty, not_poverty)) %>%
group_by(iso3c, year) %>%
mutate(y_max = cumsum(value)) %>%
mutate(y_min = y_max - value) %>%
ungroup()
df <- df %>%
mutate(indicatorID = factor(indicatorID, levels = c("poverty", "not_poverty")))
df <- df %>% left_join(wbgref$regions_excl_high_income$regions) %>%
mutate(region_iso3c = ifelse(iso3c == "OHI", "OHI", region_iso3c))
p <- ggplot(df, aes(xmin = x_min, xmax = x_max, ymin = y_min, ymax = y_max, fill = indicatorID)) +
geom_rect(color = "white", size = 0.1) +
geom_text( # numeric labels
data = . %>% filter(indicatorID=="poverty"),
aes(x = x_min + (x_max - x_min) / 2,
y = y_max + 0.03,
label = round(value*100,1)
),
position = position_dodge(0.9),
hjust = 0,
size = style$gg_text_size*0.8,
family = style$family
) +
geom_text( # region labels
data = . %>% filter(year == 2013, indicatorID == "not_poverty"),
aes(
x = x_min + (x_max - x_min) / 2,
y = y_max + 0.03,
label = c(wbgref$regions$labels,"OHI" = "Other high income")[region_iso3c]
),
position = position_dodge(),
hjust = 0,
size = style$gg_text_size,
family = style$family
) +
scale_fill_manual(
values = c(poverty = style$colors$spot.primary, not_poverty = style$colors$neutral),
labels = c(poverty = "Poor", not_poverty = "Not Poor")
) +
scale_y_continuous(
name="Share of population (%)",
breaks=c(0,0.25,0.50,0.75,1.00),
labels=c("0","25","50","75","100")
) +
coord_flip() +
facet_grid(. ~ year, scales = "free_x", space = "free_x") +
style$theme() +
theme(
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.title.x= element_text(margin = margin(1,0,0,0,"char")),
panel.grid.major = element_blank(),
legend.position = c(0.13, 0.9),
legend.justification = c(0, 1),
legend.direction = "horizontal",
panel.spacing.x = unit(0.05, "npc"),
plot.margin=margin(0,7,0.5,0,"char")
)
# Turn off clipping so right labels are visible
g <- ggplotGrob(p)
g$layout$clip[g$layout$name=="panel-2-1"] <- "off"
g$theme <- style$theme()
g
},
title = "The world's population has grown and the regional distribution of poverty has changed. Compared with 1990, there are now more poor people in Sub-Saharan Africa and fewer in South Asia and East Asia & Pacific.",
note = "Note: Poor refers to people living on less than $1.90 a day (2011 PPP). Regional aggregates exclude certain high-income countries.",
source = "Source: World Bank PovcalNet (database). http://iresearch.worldbank.org/PovcalNet/home.aspx"
)
}
fig_sdg1_poor_number_map <- function(years = 2010:2013) {
indicators = c("SI.POV.DDAY", "SP.POP.TOTL")
df <- wbgdata(
wbgref$countries$iso3c,
indicators,
year=years,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg1_poor_number_map.csv"
)
df <- df %>%
filter(complete.cases(.)) %>%
group_by(iso3c) %>%
filter(date == max(date)) %>%
ungroup
df$count <- df$SI.POV.DDAY/100 * df$SP.POP.TOTL
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
breaks = c(10e+06, 50e+06,200e+06)
wbg_bubble_map(df, wbgmaps[[quality]], style, "count",
breaks,
max_size = 0.8,
labels = millions())
},
aspect_ratio = 1.5,
title = "Populous countries such as China, India, Indonesia, and Bangladesh are home to a significant share of the total number of people living in extreme poverty.",
subtitle = wbg_name(indicator="Number of people living on less than $1.90 a day (2011 PPP)",mrv=years,denom="millions"),
source_url = "Source: World Bank PovcalNet. World Development Indicators (SI.POV.DDAY; SP.POP.TOTL)"
)
}
fig_sdg1_pov_national_ur <- function(years = 2010:2015){
indicators <- c(
"SI.POV.RUHC",
"SI.POV.URHC",
"SI.POV.DDAY",
"SI.POV.NAHC"
)
df <- wbgdata(
wbgref$countries$iso3c,
indicators, years = years,
indicator.wide = TRUE,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg1_pov_national_ur.csv"
)
df <- df %>%
filter(complete.cases(.)) %>%
group_by(iso3c) %>%
filter(date == max(date)) %>%
ungroup()
df <- df %>% left_join(wbgref$countries$regions)
figure(
data = df,
plot = function(df, style = style_atlas()) {
p.national <- ggplot(
df %>% mutate(panel=paste0("Poverty rate at national poverty lines")),
aes(SI.POV.DDAY,SI.POV.NAHC, region_iso3c)
) +
geom_abline(intercept = 0, color = style$colors$reference, linetype=style$linetypes$reference) +
geom_point(alpha = 0.9, aes(color = region_iso3c), size = style$point_size, shape = style$shapes$point, stroke = style$point_stroke)+
scale_color_manual(values = style$colors$regions, labels = wbgref$regions$labels) +
scale_y_continuous(limits = c(0, 80)) +
scale_x_continuous(limits = c(0, 80)) +
facet_grid(~ panel) +
xlab("Poverty rate at $1.90 a day (2011 PPP)") +
style$theme() +
theme(
panel.grid.major.x = NULL,
legend.position = c(1, 1.23),
legend.direction="horizontal",
legend.box = "horizontal",
plot.margin=margin(10,2,3,0,"mm"),
axis.title = NULL,
axis.title.y = element_blank()
) +
style$theme_scatter()
p.ur <- ggplot(
df %>% mutate(panel=paste0("Rural poverty rate at national poverty lines")),
aes(SI.POV.URHC,SI.POV.RUHC, region_iso3c)
) +
geom_abline(intercept = 0, color = style$colors$reference, linetype=style$linetypes$reference) +
geom_point(alpha = 0.9, aes(color = region_iso3c), size = style$point_size, shape = style$shapes$point, stroke = style$point_stroke)+
scale_color_manual(values = style$colors$regions, labels = wbgref$regions$labels) +
scale_y_continuous(limits = c(0, 80)) +
scale_x_continuous(limits = c(0, 80)) +
facet_grid(~ panel) +
xlab("Urban poverty rate at national poverty lines") +
style$theme() +
theme(
panel.grid.major.x = NULL,
plot.margin=margin(10,0,3,2,"mm"),
axis.title = NULL,
axis.title.y = element_blank()
) +
style$theme_scatter()
pt.national <- ggplotGrob(p.national)
pt.ur <- ggplotGrob(p.ur)
chart <- gtable_row("chart", list(pt.national,pt.ur), height = unit(1, "null"), widths = unit(c(1,1),"null"))
chart$theme <- style$theme()
chart
},
aspect_ratio = 1,
title = "Poverty rates at national poverty lines are generally higher than at the international $1.90 a day line, and they are higher in rural areas than in urban areas.",
subtitle = wbg_name(indicator="Poverty headcount ratio", mrv=years, denom="% of population"),
source = paste("Source: World Bank PovcalNet. World Development Indicators (SI.POV.DDAY; SI.POV.NAHC; SI.POV.RUHC; SI.POV.URHC).")
)
}
fig_sdg1_sp_quintile_targeting <- function() {
df <- read_excel(
"inputs/sdg1/income group poorest quintile and total social protection.xlsx",
range = "A1:D6"
)
df <- df %>%
gather(indicatorID, value, -c(countrycode, Group)) %>%
rename("iso3c" = countrycode) %>%
select(-Group)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>%
mutate(
indicatorID = fct_reorder(indicatorID, -value),
iso3c = factor(iso3c, levels = c("LIC", "LMC", "UMC", "HIC", "WLD"))
)
ggplot(df, aes(x = iso3c, y = value, fill = indicatorID)) +
geom_col(position = "bullet", width=.8) +
scale_fill_manual(
values=c(
`Poorest quintile` = style$colors$spot.primary,
`Total population` = style$colors$spot.secondary.light
)
) +
scale_x_discrete(labels = wbgref$all_geo$labels) +
scale_y_continuous(expand=c(0,0),limits=c(0,102))+
coord_flip()+
style$theme() +
style$theme_barchart() +
style$theme_legend("top")
},
title = "Richer countries have more comprehensive social protection programs. Within countries, the poorest are more likely to be covered by such programs, but identifying and targeting support towards the poor remains challenging.",
subtitle = wbg_name(indicator = "Share of population covered by any social protection and labor program, most recent survey in 2008-16", denom = "%"),
note = "Note: Calculated using simple averages of country-level coverage rates across income groups. Actual coverage may be higher as not all programs are captured by household surveys in some countries. Poorest quintile is calculated using pre-transfer welfare (income or consumption) per capita.",
source = "Source: World Bank ASPIRE: Atlas of Social Protection Indicators of Resilience and Equity 2018. http://hdl.handle.net/10986/29115"
)
}
fig_sdg1_sp_program_spending <- function() {
df <- read_excel("inputs/sdg1/regions by type of instrument share.xlsx", range = "A1:F7")
df <- df %>%
gather(indicatorID, value, -c(regioncode, Region)) %>%
rename("iso3c" = regioncode) %>%
select(-Region)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>%
mutate(
indicatorID = fct_reorder(indicatorID, -value),
iso3c = fct_reorder2(iso3c, indicatorID == "Cash (UCT, CCT, Social pensions)", -value),
value = value * 100
) %>%
mutate(
indicatorID = recode(
indicatorID,
"Cash (UCT, CCT, Social pensions)" = "Cash-based",
"In-kind (school feeding, fee waivers, in-kind transfers)" = "In-kind"
)
)
ggplot(df, aes(x = iso3c, y = value, fill = indicatorID)) +
geom_col(position = position_stack(reverse = TRUE)) +
scale_fill_manual(values = style$colors$categorical) +
scale_x_discrete(labels = wbgref$regions$labels) +
scale_y_continuous(expand=c(0,0), limits=c(0,102)) +
coord_flip() +
style$theme() +
style$theme_legend("top") +
style$theme_barchart()
},
title = "The most common social protection programs in every region are cash-based.",
subtitle = wbg_name(indicator = "Share of spending on the social safety net, by program", denom = "%"),
note = "Note: Based on administrative data. Cash-based programs include universal cash transfers, conditional cash transfers, and social pensions. In-kind programs include school feeding, fee waivers and other in-kind transfers.",
source = "Source: World Bank ASPIRE: Atlas of Social Protection Indicators of Resilience and Equity 2018. http://hdl.handle.net/10986/29115"
)
}
fig_sdg1_sp_cash_transfer <- function() {
df <- read_excel("inputs/sdg1/instrument by quintile share.xlsx", range = "A1:F9")
df <- df %>%
gather(quintile, value, -Program) %>%
rename("indicatorID" = Program)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(
indicatorID = fct_reorder2(indicatorID, quintile == "Q1", -value)
)
ggplot(df, aes(x = indicatorID, y = value, fill = quintile)) +
geom_col(position = position_stack(reverse = TRUE)) +
scale_fill_manual(
palette = style$colors$continuous,
labels = c("Q1" = "Q1 (Poorest)", "Q5" = "Q5 (Richest)")
) +
scale_y_continuous(expand=c(0,0), limits=c(0,102)) +
coord_flip() +
style$theme() +
style$theme_legend("top") +
style$theme_barchart()
},
title = "Cash transfer programs are the most likely to be directed toward the poor.",
subtitle = wbg_name(indicator = "Share of social security programs benefitting each population quintile, most recent survey in 2008-16", denom = "%"),
note = "Note: Calculated using simple averages of country-level coverage rates across regions. Poorest quintile is calculated using pre-transfer welfare (income or consumption) per capita.",
source = "Source: World Bank ASPIRE: Atlas of Social Protection Indicators of Resilience and Equity 2018. http://hdl.handle.net/10986/29115"
)
}
fig_sdg1_map_cadaster_etc <- function(year = 2017) {
geographic <- read_excel("./inputs/sdg1/registering_property.xlsx", sheet = "geographic_coverage")
geographic <- geographic %>% rename("country" = "Economy")
infrastructure <- read_excel("./inputs/sdg1/registering_property.xlsx", sheet = "reliability_infrastructure")
infrastructure <- infrastructure %>% rename("country" = "Economy")
df <- geographic %>%
full_join(infrastructure, by = "country") %>%
select(country,
immovable = "Are all privately held land plots in the largest business city formally registered at the immovable property registry?",
mapped = "Are all privately held land plots in the largest business city mapped?",
format = `In what format are the majority of maps of land plots kept in the largest business city—in a paper format or in a computerized format (scanned or fully digital)?`,
database = `Is the information recorded by the immovable property registration agency and the cadastral or mapping agency kept in a single database, in different but linked databases or in separate databases?`
) %>%
mutate(format = ifelse(format == "Computer/Fully digital", "Yes", "No"),
database = ifelse(database == "Separate databases", "No", "Yes")) %>%
gather(indicatorID, value, c(immovable, mapped, format, database)) %>%
mutate(coded = ifelse(value == "Yes", 1, 0)) %>%
group_by(country) %>%
summarize(total = sum(coded)) %>%
mutate(iso3c = countrycode(country, "country.name", "iso3c", custom_match = c("Kosovo" = "XKX"))) %>%
merge(data.frame("iso3c" = wbgref$countries$iso3c), by = "iso3c", all.y = TRUE) %>%
group_by(iso3c) %>%
summarize(value = max(total))
df$bins <- as.character(as.integer(df$value))
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bins",legend.nrow = 1)
g$theme <- style$theme()
g
},
title="Land rights provide security of tenure and are important for reducing poverty. But many countries lack comprehensive land registries that record ownership.",
subtitle = wbg_name(indicator = "Number of components related to property registration from Doing Business Index", denom = "0-4, higher is better"),
source = paste0("Source: ", "World Bank Doing Business (database). http://www.doingbusiness.org")
)
}
fig_sdg1_tenure_vs_rights <- function(years = 2010:2015) {
df <- read_excel("inputs/sdg1/tenure_vs_rights.xlsx",range = "A2:C11")
df <- df %>%
rename("tenure_insecurity" = `Share of households who perceived tenure insecurity (%), 2010 - 2015`,
"formal_document" = `Share of households that own formally documented agricultural land (%), 2010 - 2015`) %>%
mutate(iso3c = countrycode(country, "country.name", "iso3c")) %>%
gather(indicatorID, value, 2:3)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>%
mutate(
iso3c = fct_reorder2(iso3c, indicatorID == "format_document", -value),
indicatorID = factor(indicatorID, levels = c("tenure_insecurity", "formal_document"))
)
p <- ggplot(df, aes(x = iso3c, y = value, fill = indicatorID, order = indicatorID)) +
geom_col(position = "bullet") +
scale_x_discrete(labels = wbgref$countries$labels) +
scale_y_continuous(expand=c(0,0), limits = c(0, 102)) +
scale_fill_manual(
values = c(
tenure_insecurity = style$colors$spot.primary,
formal_document = style$colors$spot.secondary.light
),
labels = c(
tenure_insecurity = "Perceived tenure insecurity",
formal_document = "Own formally documented agricultural land"
)
) +
coord_flip() +
style$theme() +
style$theme_barchart() +
style$theme_legend("topleft") +
theme(legend.direction = "vertical")
# Hard left-align legend
g <- ggplotGrob(p)
g$layout$l[g$layout$name == "guide-box"] <- g$layout$l[g$layout$name == "guide-box"] - 1
g$theme <- style$theme()
g
},
title="People with documented ownership of land and property feel more secure.",
note="Note: Data from a study covering selected countries.",
subtitle = wbg_name(indicator = "Share of households", mrv = years, denom = "%"),
source = "Source: G. Carletto, K. Deininger, T. Hilhorst, and W. Zakout (2018)."
)
}
fig_sdg1_females_land_titles <- function(years = 2001:2015) {
df <- read_excel("./inputs/sdg1/female_land_title.xlsx", range = "A1:D19")
df <- df %>%
rename("country" = `2001 -`) %>%
gather(indicatorID, value, 2:4) %>%
mutate(value = as.numeric(gsub("%", "", value)) * 100,
iso3c = countrycode(country, "country.name", "iso3c"))
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(
iso3c = fct_reorder2(iso3c, indicatorID == "Formal document with female included on title", value),
indicatorID = factor(indicatorID, levels = c(
"No formal document",
"Formal document with no female on title",
"Formal document with female included on title"
))
)
p <- ggplot(df, aes(x = iso3c, y = value, fill = indicatorID)) +
geom_col() +
scale_x_discrete(labels = wbgref$countries$labels) +
scale_y_continuous(expand=c(0,0),limits=c(0,102))+
scale_fill_manual(
values = c(
style$colors$spot.secondary.light,
style$colors$spot.secondary,
style$colors$spot.primary
),
labels= c(
"No formal land title",
"No female on land title",
"Female included on land title"
),
guide = guide_legend(reverse = TRUE)
) +
coord_flip() +
style$theme() +
style$theme_barchart() +
style$theme_legend("top") +
theme(legend.direction = "vertical")
# Hard-left align legend
g <- ggplotGrob(p)
g$layout$l[g$layout$name == "guide-box"] <- g$layout$l[g$layout$name == "guide-box"] - 1
g$theme <- style$theme()
g
},
title = "In some countries, few women are documented on formal land titles.",
note = "Note: Data from a study covering selected countries.",
subtitle = wbg_name(indicator = "Share of households that own agricultural land or houses", mrv = years, denom = "%"),
source = paste0("Source: G. Carletto, K. Deininger, T. Hilhorst, and W. Zakout (2018).")
)
}
#make_all(path = "docs/sdg1/pdf", styler = style_atlas_cmyk, saver = figure_save_final_pdf)
make_all <- function(path = "docs/sdg1", styler = style_atlas, saver = figure_save_draft_png) {
#page 1
saver(fig_sdg1_income_histogram_poverty(), styler, file.path(path, "fig_sdg1_income_histogram_poverty.png"), width = 5.5, height = 3.5)
saver(fig_sdg1_poor_population_area_chart(), styler, file.path(path, "fig_sdg1_poor_population_area_chart.png"), width = 5.5, height = 3.5)
#page 2
saver(fig_sdg1_poor_number_map(), styler, file.path(path, "fig_sdg1_poor_number_map.png"), width = 5.5, height = 4.5)
saver(fig_sdg1_pov_national_ur(), styler, file.path(path, "fig_sdg1_pov_national_ur.png"), width = 5.5, height = 4)
#page 3
saver(fig_sdg1_sp_quintile_targeting(), styler, file.path(path, "fig_sdg1_sp_quintile_targeting.png"), width = 5.5, height = 2.6)
saver(fig_sdg1_sp_program_spending(), styler, file.path(path, "fig_sdg1_sp_program_spending.png"), width = 5.5, height = 2.75)
saver(fig_sdg1_sp_cash_transfer(), styler, file.path(path, "fig_sdg1_sp_cash_transfer.png"), width = 5.5, height = 3.25)
#page 4
saver(fig_sdg1_map_cadaster_etc(), styler, file.path(path, "fig_sdg1_map_cadaster_etc.png"), width = 5.5, height = 4.5)
saver(fig_sdg1_tenure_vs_rights(), styler, file.path(path, "fig_sdg1_tenure_vs_rights.png"), width = 2.8, height = 4)
saver(fig_sdg1_females_land_titles(), styler, file.path(path, "fig_sdg1_females_land_titles.png"), width = 2.7, height = 4)
}