forked from Byronnar/tensorflow-serving-yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
anchors_generate.py
executable file
·285 lines (222 loc) · 8.79 KB
/
anchors_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# coding: utf-8
from __future__ import division, print_function
from __future__ import division
import xml.etree.ElementTree as ET
import random
import os
names_dict = {}
cnt = 0
saveBasePath = r"./VOC2007/ImageSets" # txt文件保存目录
total_xml = os.listdir(r'./VOC2007/Annotations') # 获取标注文件(file_name.xml)
# 划分数据集是为了读取图片等数据,以便于拿到聚类结果
trainval_percent = 1
# print(trainval_percent)
tv = int(len(total_xml) * trainval_percent)
trainval = random.sample(range(len(total_xml)), tv)
ftrainval = open(os.path.join(saveBasePath, 'Main/trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath, 'Main/test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath, 'Main/train.txt'), 'w')
fval = open(os.path.join(saveBasePath, 'Main/val.txt'), 'w')
for i in range(len(total_xml)): # 遍历所有 file_name.xml 文件
name = total_xml[i][:-4] + '\n' # 获取 file_name
if i in trainval:
ftrainval.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
f = open('./data/classes/vis.names', 'r').readlines()
for line in f:
line = line.strip()
# print(line)
names_dict[line] = cnt
cnt += 1
voc_07 = './VOC2007'
# voc_12 = '/data/VOCdevkit/VOC2012'
anno_path = [os.path.join(voc_07, 'Annotations')]
img_path = [os.path.join(voc_07, 'JPEGImages')]
trainval_path = [os.path.join(voc_07, 'ImageSets/Main/trainval.txt')]
test_path = [os.path.join(voc_07, 'ImageSets/Main/test.txt')]
def parse_xml(path):
tree = ET.parse(path)
img_name = path.split('/')[-1][:-4]
height = tree.findtext("./size/height")
width = tree.findtext("./size/width")
objects = [img_name, width, height]
for obj in tree.findall('object'):
difficult = obj.find('difficult').text
if difficult == '1':
continue
name = obj.find('name').text
bbox = obj.find('bndbox')
xmin = bbox.find('xmin').text
ymin = bbox.find('ymin').text
xmax = bbox.find('xmax').text
ymax = bbox.find('ymax').text
name = str(names_dict[name])
# print(name)
objects.extend([name, xmin, ymin, xmax, ymax])
if len(objects) > 1:
return objects
else:
return None
test_cnt = 0
def gen_test_txt(txt_path):
global test_cnt
f = open(txt_path, 'w')
for i, path in enumerate(test_path):
img_names = open(path, 'r').readlines()
for img_name in img_names:
img_name = img_name.strip()
xml_path = anno_path[i] + '/' + img_name + '.xml'
objects = parse_xml(xml_path)
if objects:
objects[0] = img_path[i] + '/' + img_name + '.jpg'
#print(objects[0])
if os.path.exists(objects[0]):
objects.insert(0, str(test_cnt))
test_cnt += 1
objects = ' '.join(objects) + '\n'
#print(objects)
f.write(objects)
f.close()
train_cnt = 0
def gen_train_txt(txt_path):
global train_cnt
f = open(txt_path, 'w')
for i, path in enumerate(trainval_path):
img_names = open(path, 'r').readlines()
for img_name in img_names:
img_name = img_name.strip()
xml_path = anno_path[i] + '/' + img_name + '.xml'
objects = parse_xml(xml_path)
if objects:
objects[0] = img_path[i] + '/' + img_name + '.jpg'
if os.path.exists(objects[0]):
objects.insert(0, str(train_cnt))
train_cnt += 1
objects = ' '.join(objects) + '\n'
f.write(objects)
f.close()
gen_train_txt('./train.txt')
gen_test_txt('./val.txt')
#***************************************anchors*****************************************************************
import numpy as np
def iou(box, clusters):
"""
Calculates the Intersection over Union (IoU) between a box and k clusters.
param:
box: tuple or array, shifted to the origin (i. e. width and height)
clusters: numpy array of shape (k, 2) where k is the number of clusters
return:
numpy array of shape (k, 0) where k is the number of clusters
"""
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 10 or np.count_nonzero(y == 0) > 10:
raise ValueError("Box has no area")
intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = np.true_divide(intersection, box_area + cluster_area - intersection + 1e-10)
# iou_ = intersection / (box_area + cluster_area - intersection + 1e-10)
return iou_
def avg_iou(boxes, clusters):
"""
Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.
param:
boxes: numpy array of shape (r, 2), where r is the number of rows
clusters: numpy array of shape (k, 2) where k is the number of clusters
return:
average IoU as a single float
"""
return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
def translate_boxes(boxes):
"""
Translates all the boxes to the origin.
param:
boxes: numpy array of shape (r, 4)
return:
numpy array of shape (r, 2)
"""
new_boxes = boxes.copy()
for row in range(new_boxes.shape[0]):
new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
return np.delete(new_boxes, [0, 1], axis=1)
def kmeans(boxes, k, dist=np.median):
"""
Calculates k-means clustering with the Intersection over Union (IoU) metric.
param:
boxes: numpy array of shape (r, 2), where r is the number of rows
k: number of clusters
dist: distance function
return:
numpy array of shape (k, 2)
"""
rows = boxes.shape[0]
distances = np.empty((rows, k))
last_clusters = np.zeros((rows,))
np.random.seed()
# the Forgy method will fail if the whole array contains the same rows
clusters = boxes[np.random.choice(rows, k, replace=False)]
while True:
for row in range(rows):
distances[row] = 1 - iou(boxes[row], clusters)
nearest_clusters = np.argmin(distances, axis=1)
if (last_clusters == nearest_clusters).all():
break
for cluster in range(k):
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
last_clusters = nearest_clusters
return clusters
def parse_anno(annotation_path, target_size=None):
anno = open(annotation_path, 'r')
result = []
for line in anno:
s = line.strip().split(' ')
img_w = int(s[2])
img_h = int(s[3])
s = s[4:]
box_cnt = len(s) // 5
for i in range(box_cnt):
x_min, y_min, x_max, y_max = float(s[i*5+1]), float(s[i*5+2]), float(s[i*5+3]), float(s[i*5+4])
width = x_max - x_min
height = y_max - y_min
# assert width > 0
# assert height > 0
# use letterbox resize, i.e. keep the original aspect ratio
# get k-means anchors on the resized target image size
if target_size is not None:
resize_ratio = min(target_size[0] / img_w, target_size[1] / img_h)
width *= resize_ratio
height *= resize_ratio
result.append([width, height])
# get k-means anchors on the original image size
else:
result.append([width, height])
result = np.asarray(result)
return result
def get_kmeans(anno, cluster_num=9):
anchors = kmeans(anno, cluster_num)
ave_iou = avg_iou(anno, anchors)
anchors = anchors.astype('int').tolist()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors, ave_iou
if __name__ == '__main__':
# target resize format: [width, height]
# if target_resize is speficied[416,416], the anchors are on the resized image scale
# if target_resize is set to None, the anchors are on the original image scale 5,8, 11,12, 10,22, 24,17, 19,34, 46,27, 35,52, 73,62, 132,123
#target_size = [416, 416] # 1,2, 2,4, 5,4, 4,8, 7,8, 12,7, 9,14, 19,16, 34,32
target_size = [608, 608] # 1,3, 4,4, 3,8, 9,6, 7,13, 17,10, 13,20, 27,23, 50,46
annotation_path = "./train.txt"
anno_result = parse_anno(annotation_path, target_size=target_size)
anchors, ave_iou = get_kmeans(anno_result, 9)
anchor_string = ''
for anchor in anchors:
anchor_string += '{},{}, '.format(anchor[0], anchor[1])
anchor_string = anchor_string[:-2]
print('anchors are:')
print(anchor_string)
print('the average iou is:')
print(ave_iou)