-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathbenchmark.py
81 lines (69 loc) · 2.24 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.models as models
from torch.autograd import Variable
class MobileNet(nn.Module):
def __init__(self):
super(MobileNet, self).__init__()
def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True)
)
def conv_dw(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.ReLU(inplace=True),
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True),
)
self.model = nn.Sequential(
conv_bn( 3, 32, 2),
conv_dw( 32, 64, 1),
conv_dw( 64, 128, 2),
conv_dw(128, 128, 1),
conv_dw(128, 256, 2),
conv_dw(256, 256, 1),
conv_dw(256, 512, 2),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 1024, 2),
conv_dw(1024, 1024, 1),
nn.AvgPool2d(7),
)
self.fc = nn.Linear(1024, 1000)
def forward(self, x):
x = self.model(x)
x = x.view(-1, 1024)
x = self.fc(x)
return x
def speed(model, name):
t0 = time.time()
input = torch.rand(1,3,224,224).cuda()
input = Variable(input, volatile = True)
t1 = time.time()
model(input)
t2 = time.time()
model(input)
t3 = time.time()
print('%10s : %f' % (name, t3 - t2))
if __name__ == '__main__':
#cudnn.benchmark = True # This will make network slow ??
resnet18 = models.resnet18().cuda()
alexnet = models.alexnet().cuda()
vgg16 = models.vgg16().cuda()
squeezenet = models.squeezenet1_0().cuda()
mobilenet = MobileNet().cuda()
speed(resnet18, 'resnet18')
speed(alexnet, 'alexnet')
speed(vgg16, 'vgg16')
speed(squeezenet, 'squeezenet')
speed(mobilenet, 'mobilenet')