-
Notifications
You must be signed in to change notification settings - Fork 320
/
detect.py
48 lines (40 loc) · 1.39 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import sys
import time
from PIL import Image, ImageDraw
from models.tiny_yolo import TinyYoloNet
from utils import do_detect, plot_boxes, load_class_names
from darknet import Darknet
def detect(cfgfile, weightfile, imgfile):
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = 1
if use_cuda:
m.cuda()
img = Image.open(imgfile).convert('RGB')
sized = img.resize((m.width, m.height))
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes(img, boxes, 'predictions.jpg', class_names)
if __name__ == '__main__':
if len(sys.argv) == 4:
cfgfile = sys.argv[1]
weightfile = sys.argv[2]
imgfile = sys.argv[3]
detect(cfgfile, weightfile, imgfile)
else:
print('Usage: ')
print(' python detect.py cfgfile weightfile imgfile')
#detect('cfg/tiny-yolo-voc.cfg', 'tiny-yolo-voc.weights', 'data/person.jpg', version=1)