-
Notifications
You must be signed in to change notification settings - Fork 0
/
fake_news_tf_idf.py
56 lines (40 loc) · 1.46 KB
/
fake_news_tf_idf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# -*- coding: utf-8 -*-
"""Fake_News_TF-IDF.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/12km_WpnDCFFIuW3-4ALhahJC3L26F7kK
"""
import numpy as np
import pandas as pd
import itertools
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from google.colab import drive
drive.mount('/content/gdrive')
train = pd.read_csv('/content/gdrive/My Drive/news.csv')
df = train
df
#Get Shape
df.shape
df.describe()
#Get labels
labels = df.label
labels.head()
#Split the dataset into training and testing sets
x_train,x_test,y_train,y_test=train_test_split(df['text'], labels, test_size=0.2, random_state=7)
#Initialise a TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(stop_words = 'english', max_df=0.7)
#Fit and transform training set, transform testing set
tfidf_train = tfidf_vectorizer.fit_transform(x_train)
tfidf_test = tfidf_vectorizer.transform(x_test)
#Initialize a PassiveAgressiveClassifier
pac = PassiveAggressiveClassifier(max_iter = 50)
pac.fit(tfidf_train, y_train)
#Predict on the test set and calculate accuracy
y_pred = pac.predict(tfidf_test)
score = accuracy_score(y_test, y_pred)
print(f'Accuracy: {round(score * 100, 2)}%')
#Build confusion matrix
confusion_matrix(y_test, y_pred, labels = ['FAKE', 'REAL'])