-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconvert_pretrained.py
68 lines (54 loc) · 3.34 KB
/
convert_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
from collections import defaultdict
import models
from models.utils import LayerTypeParser
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", help="The pretrained llama model to convert", required=True)
parser.add_argument("--config_name", help="The config file of the expected LCKV model", required=True)
parser.add_argument("--config_overrides", help="Override some existing config settings. Example: layer_types=0_6_6_6_6_6_6_7,forward_passes=7", default=None, required=False)
parser.add_argument("--tokenizer_name", help="Pretrained tokenizer name or path if not the same as the pretrained model.", default=None, required=False)
parser.add_argument("--output_dir", help="The output directory where the converted model will be written.", required=True)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path)
config = AutoConfig.from_pretrained(args.config_name)
pt_model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
pt_model_state_dict = pt_model.state_dict()
assert config.model_type == "lckv-llama", "The target model must be a LCKV model"
# allow config overrides under all circumstances
if args.config_overrides is not None:
print(f"Overriding config: {args.config_overrides}")
config.update_from_string(args.config_overrides)
print(f"New config: {config}")
model = AutoModelForCausalLM.from_config(config)
model_state_dict = model.state_dict()
# Copy the weights from the pretrained model to the LCKV model
print("Copying weights from the pretrained model to the LCKV model...")
for name, param in pt_model.named_parameters():
if ('k_proj' in name or 'v_proj' in name):
continue
if name in model_state_dict:
model_state_dict[name].copy_(param.data)
else:
print(f"WARNING: {name} not found in the model")
# Average the weights of the k_proj and v_proj layers
# The pretrained layer weights will contribute to the layer it attends to
# XXX: how to align heads?
print("Averaging the weights of the k_proj and v_proj layers...")
parser = LayerTypeParser(config.layer_types)
k_proj, v_proj = defaultdict(list), defaultdict(list)
for layer_type in parser:
k_proj[layer_type.attends_to].append(pt_model_state_dict[f"model.layers.{layer_type.layer_idx}.self_attn.k_proj.weight"])
v_proj[layer_type.attends_to].append(pt_model_state_dict[f"model.layers.{layer_type.layer_idx}.self_attn.v_proj.weight"])
for layer_type in parser:
if layer_type.computes_kv:
model_state_dict[f"model.layers.{layer_type.layer_idx}.self_attn.k_proj.weight"].copy_(sum(k_proj[layer_type.layer_idx]) / len(k_proj[layer_type.layer_idx]))
model_state_dict[f"model.layers.{layer_type.layer_idx}.self_attn.v_proj.weight"].copy_(sum(v_proj[layer_type.layer_idx]) / len(v_proj[layer_type.layer_idx]))
# Save the model
print(f"Saving the model to {args.output_dir}...")
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
print("Model convertion finished successfully")
if __name__ == "__main__":
main()