-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_optim.py
98 lines (79 loc) · 4.42 KB
/
test_optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor
from tinygrad.nn.optim import Adam, SGD, AdamW
import pytest
pytestmark = pytest.mark.exclude_cuda
np.random.seed(1337)
x_init = np.random.randn(1,4).astype(np.float32)
W_init = np.random.randn(4,4).astype(np.float32)
m_init = np.random.randn(1,4).astype(np.float32)
class TinyNet:
def __init__(self, tensor):
self.x = tensor(x_init.copy(), requires_grad=True)
self.W = tensor(W_init.copy(), requires_grad=True)
self.m = tensor(m_init.copy())
def forward(self):
out = self.x.matmul(self.W).relu()
# print(out.detach().numpy())
out = out.log_softmax(1)
out = out.mul(self.m).add(self.m).sum()
return out
def step(tensor, optim, steps=1, kwargs={}):
net = TinyNet(tensor)
optim = optim([net.x, net.W], **kwargs)
for _ in range(steps):
out = net.forward()
optim.zero_grad()
out.backward()
optim.step()
return net.x.detach().numpy(), net.W.detach().numpy()
class TestOptim(unittest.TestCase):
def _test_optim(self, tinygrad_optim, torch_optim, steps, opts, atol, rtol):
for x,y in zip(step(Tensor, tinygrad_optim, steps, kwargs=opts),
step(torch.tensor, torch_optim, steps, kwargs=opts)):
np.testing.assert_allclose(x, y, atol=atol, rtol=rtol)
def _test_sgd(self, steps, opts, atol, rtol): self._test_optim(SGD, torch.optim.SGD, steps, opts, atol, rtol)
def _test_adam(self, steps, opts, atol, rtol): self._test_optim(Adam, torch.optim.Adam, steps, opts, atol, rtol)
def _test_adamw(self, steps, opts, atol, rtol): self._test_optim(AdamW, torch.optim.AdamW, steps, opts, atol, rtol)
def test_sgd(self): self._test_sgd(1, {'lr': 0.001}, 1e-6, 0)
def test_sgd_high_lr(self): self._test_sgd(1, {'lr': 10}, 1e-6, 1e-5)
def test_sgd_wd(self): self._test_sgd(1, {'lr': 0.001, 'weight_decay': 0.1}, 1e-6, 0)
def test_sgd_high_lr_wd(self): self._test_sgd(1, {'lr': 10, 'weight_decay': 0.1}, 1e-6, 1e-5)
def test_multistep_sgd(self): self._test_sgd(10, {'lr': 0.001}, 1e-6, 0)
def test_multistep_sgd_high_lr(self): self._test_sgd(10, {'lr': 10}, 1e-6, 3e-4)
def test_multistep_sgd_wd(self): self._test_sgd(10, {'lr': 0.001, 'weight_decay': 0.1}, 1e-6, 0)
def test_multistep_sgd_high_lr_wd(self): self._test_sgd(10, {'lr': 9, 'weight_decay': 0.1}, 1e-6, 3e-4)
def test_multistep_sgd_momentum(self): self._test_sgd(10, {'lr': 0.001, 'momentum': 0.9}, 1e-6, 0)
def test_multistep_sgd_high_lr_momentum(self): self._test_sgd(10, {'lr': 10, 'momentum': 0.9}, 1e-5, 3e-4)
def test_multistep_sgd_momentum_wd(self): self._test_sgd(10, {'lr': 0.001, 'momentum': 0.9, 'weight_decay': 0.1}, 1e-6, 0)
def test_multistep_sgd_high_lr_momentum_wd(self): self._test_sgd(10, {'lr': 10, 'momentum': 0.9, 'weight_decay': 0.1}, 1e-5, 3e-4)
def test_multistep_sgd_nesterov_momentum(self): self._test_sgd(10, {'lr': 0.001, 'momentum': 0.9, 'nesterov': True}, 1e-5, 0)
def test_multistep_sgd_high_lr_nesterov_momentum(self): self._test_sgd(10, {'lr': 10, 'momentum': 0.9, 'nesterov': True}, 1e-5, 3e-4)
def test_multistep_sgd_nesterov_momentum_wd(self): self._test_sgd(10, {'lr': 0.001, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.1}, 1e-5, 0)
def test_multistep_sgd_high_lr_nesterov_momentum_wd(self): self._test_sgd(10, {'lr': 9, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.1}, 1e-5, 3e-4)
def test_adam(self): self._test_adam(1, {'lr': 0.001}, 1e-5, 0)
def test_adam_high_lr(self): self._test_adam(1, {'lr': 10}, 1e-4, 1e-4)
def test_adamw(self): self._test_adamw(1, {'lr': 0.001}, 1e-5, 0)
def test_adamw_high_lr(self): self._test_adamw(1, {'lr': 10}, 1e-4, 1e-4)
def test_multistep_adam(self): self._test_adam(10, {'lr': 0.001}, 1e-5, 0)
def test_multistep_adam_high_lr(self): self._test_adam(10, {'lr': 10}, 2e-4, 5e-4)
def test_multistep_adamw(self): self._test_adamw(10, {'lr': 0.001}, 1e-5, 0)
def test_multistep_adamw_high_lr(self): self._test_adamw(10, {'lr': 10}, 5e-4, 2e-3)
def test_duped_weights(self):
for Opt in [Adam, AdamW, SGD]:
losses = []
for i in range(2):
w = Tensor(x_init.copy())
opt = Opt([w], lr=0.1) if i == 0 else Opt([w, w], lr=0.1)
loss = None
for _ in range(3):
loss = w.sum()
opt.zero_grad()
loss.backward()
opt.step()
losses.append(loss.numpy())
np.testing.assert_allclose(losses[0], losses[1], atol=1e-4, rtol=0)
if __name__ == '__main__':
unittest.main()