-
Notifications
You must be signed in to change notification settings - Fork 0
/
unet3d.py
59 lines (51 loc) · 2.46 KB
/
unet3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from pathlib import Path
import torch
from tinygrad import nn
from tinygrad.tensor import Tensor
from extra.utils import download_file, get_child
class DownsampleBlock:
def __init__(self, c0, c1, stride=2):
self.conv1 = [nn.Conv2d(c0, c1, kernel_size=(3,3,3), stride=stride, padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
self.conv2 = [nn.Conv2d(c1, c1, kernel_size=(3,3,3), padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
def __call__(self, x):
return x.sequential(self.conv1).sequential(self.conv2)
class UpsampleBlock:
def __init__(self, c0, c1):
self.upsample_conv = [nn.ConvTranspose2d(c0, c1, kernel_size=(2,2,2), stride=2)]
self.conv1 = [nn.Conv2d(2 * c1, c1, kernel_size=(3,3,3), padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
self.conv2 = [nn.Conv2d(c1, c1, kernel_size=(3,3,3), padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
def __call__(self, x, skip):
x = x.sequential(self.upsample_conv)
x = Tensor.cat(x, skip, dim=1)
return x.sequential(self.conv1).sequential(self.conv2)
class UNet3D:
def __init__(self, in_channels=1, n_class=3):
filters = [32, 64, 128, 256, 320]
inp, out = filters[:-1], filters[1:]
self.input_block = DownsampleBlock(in_channels, filters[0], stride=1)
self.downsample = [DownsampleBlock(i, o) for i, o in zip(inp, out)]
self.bottleneck = DownsampleBlock(filters[-1], filters[-1])
self.upsample = [UpsampleBlock(filters[-1], filters[-1])] + [UpsampleBlock(i, o) for i, o in zip(out[::-1], inp[::-1])]
self.output = {"conv": nn.Conv2d(filters[0], n_class, kernel_size=(1, 1, 1))}
def __call__(self, x):
x = self.input_block(x)
outputs = [x]
for downsample in self.downsample:
x = downsample(x)
outputs.append(x)
x = self.bottleneck(x)
for upsample, skip in zip(self.upsample, outputs[::-1]):
x = upsample(x, skip)
x = self.output["conv"](x)
return x
def load_from_pretrained(self):
fn = Path(__file__).parents[1] / "weights" / "unet-3d.ckpt"
download_file("https://zenodo.org/record/5597155/files/3dunet_kits19_pytorch.ptc?download=1", fn)
state_dict = torch.jit.load(fn, map_location=torch.device("cpu")).state_dict()
for k, v in state_dict.items():
obj = get_child(self, k)
assert obj.shape == v.shape, (k, obj.shape, v.shape)
obj.assign(v.numpy())
if __name__ == "__main__":
mdl = UNet3D()
mdl.load_from_pretrained()