-
Notifications
You must be signed in to change notification settings - Fork 3
/
measure_sharpness.py
404 lines (350 loc) · 15.8 KB
/
measure_sharpness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import pdb
import argparse
import os
import time
import logging
from random import uniform
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import models
from torch.autograd import Variable
from data import get_dataset
from preprocess import get_transform
from utils import *
from ast import literal_eval
from torch.nn.utils import clip_grad_norm
from math import ceil
import numpy as np
import scipy.optimize as sciopt
import warnings
from sklearn import random_projection as rp
import re
#import matplotlib.pyplot as plt
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ConvNet Training')
parser.add_argument('--results_dir', metavar='RESULTS_DIR',
default='./TrainingResults', help='results dir')
parser.add_argument('--save', metavar='SAVE', default='',
help='saved folder')
parser.add_argument('--dataset', metavar='DATASET', default='cifar10',
help='dataset name or folder')
parser.add_argument('--model', '-a', metavar='MODEL', default='resnet',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: alexnet)')
parser.add_argument('--input_size', type=int, default=None,
help='image input size')
parser.add_argument('--model_config', default='',
help='additional architecture configuration')
parser.add_argument('--type', default='torch.cuda.FloatTensor',
help='type of tensor - e.g torch.cuda.HalfTensor')
parser.add_argument('--gpus', default='0',
help='gpus used for training - e.g 0,1,3')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=1000, type=int,
metavar='N', help='mini-batch size (default: 2048)')
parser.add_argument('-mb', '--mini-batch-size', default=100, type=int,
help='mini-mini-batch size (default: 128)')
parser.add_argument('--save_all', dest='save_all', action='store_true',
help='save all better checkpoints')
parser.add_argument('--no-save_all', dest='save_all', action='store_false',
help='save all better checkpoints')
parser.set_defaults(save_all=False)
parser.add_argument('--augment', dest='augment', action='store_true',
help='data augment')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='data augment')
parser.set_defaults(augment=True)
parser.add_argument('--optimizer', default='SGD', type=str, metavar='OPT',
help='optimizer function used')
parser.add_argument('--lr', '--learning_rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--sharpness-smoothing', '--ss', default=0.0, type=float,
metavar='SS', help='sharpness smoothing (default: 0)')
parser.add_argument('--anneal-index', '--ai', default=0.55, type=float,
metavar='AI', help='Annealing index of noise (default: 0.55)')
parser.add_argument('--tanh-scale', '--ts', default=10., type=float,
metavar='TS', help='scale of transition in tanh')
parser.add_argument('--smoothing-type', default='tanh', type=str, metavar='ST',
help='The type of chaning smoothing noise: constant, anneal, or tanh')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', type=str, metavar='FILE',
help='evaluate model FILE on validation set')
parser.add_argument('--epsilon', default=0.0005, type=float,
help='epsilon to contrain the box size for sharpness measure')
parser.add_argument('-m', '--manifolds', default=0, type=int, metavar='M',
help='The dimensionality of manifolds to measure sharpness. (0: full-space)')
parser.add_argument('-t', '--times', default=1, type=int, metavar='T',
help='Times to average over for sharpness')
def main():
#torch.manual_seed(123)
global args, best_prec1
best_prec1 = 0
args = parser.parse_args()
if args.evaluate:
args.results_dir = '/tmp'
if args.save is '':
args.save = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
save_path = os.path.join(args.results_dir, args.save)
if not os.path.exists(save_path):
os.makedirs(save_path)
else:
raise OSError('Directory {%s} exists. Use a new one.' % save_path)
setup_logging(os.path.join(save_path, 'log.txt'))
results_file = os.path.join(save_path, 'results.%s')
results = ResultsLog(results_file % 'csv', results_file % 'html')
logging.info("saving to %s", save_path)
logging.debug("run arguments: %s", args)
if 'cuda' in args.type:
#torch.cuda.manual_seed_all(123)
args.gpus = [int(i) for i in args.gpus.split(',')]
torch.cuda.set_device(args.gpus[0])
cudnn.benchmark = True
if len(args.gpus) != 1:
raise NotImplementedError('Please use one gpu.')
else:
args.gpus = None
if args.batch_size != args.mini_batch_size:
args.mini_batch_size = args.batch_size
warnings.warn('--mini-batch-size is enforced to be set as --batch-size {}'.format(args.mini_batch_size),
RuntimeWarning)
# create model
logging.info("creating model %s", args.model)
model = models.__dict__[args.model]
model_config = {'input_size': args.input_size, 'dataset': args.dataset}
if args.model_config is not '':
model_config = dict(model_config, **literal_eval(args.model_config))
model = model(**model_config)
logging.info("created model with configuration: %s", model_config)
# optionally resume from a checkpoint
if args.evaluate:
if not os.path.isfile(args.evaluate):
parser.error('invalid checkpoint: {}'.format(args.evaluate))
checkpoint = torch.load(args.evaluate, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
logging.info("loaded checkpoint '%s' (epoch %s)",
args.evaluate, checkpoint['epoch'])
else:
raise ValueError("Please specify the path of evaluated model")
num_parameters = sum([l.nelement() for l in model.parameters()])
logging.info("number of parameters: %d", num_parameters)
# Data loading code
default_transform = {
'train': get_transform(args.dataset,
input_size=args.input_size, augment=args.augment),
'eval': get_transform(args.dataset,
input_size=args.input_size, augment=False)
}
transform = getattr(model, 'input_transform', default_transform)
# define loss function (criterion) and optimizer
criterion = getattr(model, 'criterion', nn.CrossEntropyLoss)()
criterion.type(args.type)
model.type(args.type)
val_data = get_dataset(args.dataset, 'val', transform['eval'])
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# for k in model.state_dict():
# if re.match('.*weight.*', k):
# plt.figure()
# plt.hist(model.state_dict()[k].cpu().numpy().reshape(-1), bins='auto')
# plt.title(k)
# plt.show()
val_result = validate(val_loader, model, criterion, 0)
val_loss, val_prec1, val_prec5 = [val_result[r]
for r in ['loss', 'prec1', 'prec5']]
logging.info('\nValidation Loss {val_loss:.4f} \t'
'Validation Prec@1 {val_prec1:.3f} \t'
'Validation Prec@5 {val_prec5:.3f} \n'
.format(val_loss=val_loss,
val_prec1=val_prec1,
val_prec5=val_prec5))
sharpnesses= []
for time in range(args.times):
sharpness = get_sharpness(val_loader, model, criterion, manifolds=args.manifolds)
sharpnesses.append(sharpness)
logging.info('sharpness {} = {}'.format(time,sharpness))
logging.info('sharpnesses = {}'.format(str(sharpnesses)))
_std = np.std(sharpnesses)*np.sqrt(args.times)/np.sqrt(args.times-1)
_mean = np.mean(sharpnesses)
logging.info(u'mean sharpness = {sharpness:.4f}\u00b1{err:.4f}'.format(sharpness=_mean,err=_std))
return
def forward(data_loader, model, criterion, epoch=0, training=True, optimizer=None):
if args.gpus and len(args.gpus) > 1:
model = torch.nn.DataParallel(model, args.gpus)
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
grad_vec = None
if training:
optimizer = torch.optim.SGD(model.parameters(), 1.0)
optimizer.zero_grad() # only zerout at the beginning
for i, (inputs, target) in enumerate(data_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpus is not None:
target = target.cuda(async=True)
input_var = Variable(inputs.type(args.type), volatile=not training)
target_var = Variable(target)
# compute output
if not training:
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target_var.data, topk=(1, 5))
losses.update(loss.data[0], input_var.size(0))
top1.update(prec1[0], input_var.size(0))
top5.update(prec5[0], input_var.size(0))
else:
mini_inputs = input_var.chunk(args.batch_size // args.mini_batch_size)
mini_targets = target_var.chunk(args.batch_size // args.mini_batch_size)
for k, mini_input_var in enumerate(mini_inputs):
mini_target_var = mini_targets[k]
output = model(mini_input_var)
loss = criterion(output, mini_target_var)
prec1, prec5 = accuracy(output.data, mini_target_var.data, topk=(1, 5))
losses.update(loss.data[0], mini_input_var.size(0))
top1.update(prec1[0], mini_input_var.size(0))
top5.update(prec5[0], mini_input_var.size(0))
# compute gradient and do SGD step
loss.backward()
#optimizer.step() # no step in this case
# reshape and averaging gradients
if training:
for p in model.parameters():
p.grad.data.div_(len(data_loader))
if grad_vec is None:
grad_vec = p.grad.data.view(-1)
else:
grad_vec = torch.cat((grad_vec, p.grad.data.view(-1)))
#logging.info('{phase} - \t'
# 'Loss {loss.avg:.4f}\t'
# 'Prec@1 {top1.avg:.3f}\t'
# 'Prec@5 {top5.avg:.3f}'.format(
# phase='TRAINING' if training else 'EVALUATING',
# loss=losses, top1=top1, top5=top5))
return {'loss': losses.avg,
'prec1': top1.avg,
'prec5': top5.avg}, grad_vec
def train(data_loader, model, criterion, epoch, optimizer):
# switch to train mode
raise NotImplementedError('train functionality is changed. Do not use it!')
def validate(data_loader, model, criterion, epoch):
# switch to evaluate mode
model.eval()
res, _ = forward(data_loader, model, criterion, epoch,
training=False, optimizer=None)
return res
def get_minus_cross_entropy(x, data_loader, model, criterion, training=False):
if type(x).__module__ == np.__name__:
x = torch.from_numpy(x).float()
x = x.cuda()
# switch to evaluate mode
model.eval()
# fill vector x of parameters to model
x_start = 0
for p in model.parameters():
psize = p.data.size()
peltnum = 1
for s in psize:
peltnum *= s
x_part = x[x_start:x_start+peltnum]
p.data = x_part.view(psize)
x_start += peltnum
result, grads = forward(data_loader, model, criterion, 0,
training=training, optimizer=None)
#print ('get_minus_cross_entropy {}!'.format(-result['loss']))
return (-result['loss'], None if grads is None else grads.cpu().numpy().astype(np.float64))
def get_sharpness(data_loader, model, criterion, manifolds=0):
# extract current x0
x0 = None
for p in model.parameters():
if x0 is None:
x0 = p.data.view(-1)
else:
x0 = torch.cat((x0, p.data.view(-1)))
x0 = x0.cpu().numpy()
# get current f_x
f_x0, _ = get_minus_cross_entropy(x0, data_loader, model, criterion)
f_x0 = -f_x0
logging.info('min loss f_x0 = {loss:.4f}'.format(loss=f_x0))
# get the bounds
epsilon = args.epsilon
# find the minimum
if 0==manifolds:
x_min = np.reshape(x0 - epsilon * (np.abs(x0) + 1), (x0.shape[0], 1))
x_max = np.reshape(x0 + epsilon * (np.abs(x0) + 1), (x0.shape[0], 1))
bounds = np.concatenate([x_min, x_max], 1)
func = lambda x: get_minus_cross_entropy(x, data_loader, model, criterion, training=True)
init_guess = x0
else:
warnings.warn("Small manifolds may not be able to explore the space.")
assert(manifolds<=x0.shape[0])
#transformer = rp.GaussianRandomProjection(n_components=manifolds)
#transformer.fit(np.random.rand(manifolds, x0.shape[0]))
#A_plus = transformer.components_
#A = np.linalg.pinv(A_plus)
A_plus = np.random.rand(manifolds, x0.shape[0])*2.-1.
# normalize each column to unit length
A_plus_norm = np.linalg.norm(A_plus, axis=1)
A_plus = A_plus / np.reshape(A_plus_norm, (manifolds,1))
A = np.linalg.pinv(A_plus)
abs_bound = epsilon * (np.abs(np.dot(A_plus, x0))+1)
abs_bound = np.reshape(abs_bound, (abs_bound.shape[0], 1))
bounds = np.concatenate([-abs_bound, abs_bound], 1)
def func(y):
floss, fg = get_minus_cross_entropy(x0 + np.dot(A, y), data_loader, model, criterion, training=True)
return floss, np.dot(np.transpose(A), fg)
#func = lambda y: get_minus_cross_entropy(x0+np.dot(A, y), data_loader, model, criterion, training=True)
init_guess = np.zeros(manifolds)
#rand_selections = (np.random.rand(bounds.shape[0])+1e-6)*0.99
#init_guess = np.multiply(1.-rand_selections, bounds[:,0])+np.multiply(rand_selections, bounds[:,1])
minimum_x, f_x, d = sciopt.fmin_l_bfgs_b(
func,
init_guess,
maxiter=10,
bounds=bounds,
#factr=10.,
#pgtol=1.e-12,
disp=1)
f_x = -f_x
logging.info('max loss f_x = {loss:.4f}'.format(loss=f_x))
sharpness = (f_x - f_x0)/(1+f_x0)*100
# recover the model
x0 = torch.from_numpy(x0).float()
x0 = x0.cuda()
x_start = 0
for p in model.parameters():
psize = p.data.size()
peltnum = 1
for s in psize:
peltnum *= s
x_part = x0[x_start:x_start + peltnum]
p.data = x_part.view(psize)
x_start += peltnum
return sharpness
if __name__ == '__main__':
main()