-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathinbreast.py
296 lines (281 loc) · 10.4 KB
/
inbreast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#import dicom # some machines not install pydicom
import scipy.misc
import numpy as np
from sklearn.model_selection import StratifiedKFold
import cPickle
#import matplotlib
#import matplotlib.pyplot as plt
from skimage.filters import threshold_otsu
import os
from os.path import join as join
import csv
import scipy.ndimage
import dicom
#import cv2
path = '../AllDICOMs/'
preprocesspath = '../preprocesspath/'
labelfile = './label.txt'
def readlabel():
'''read the label as a dict from labelfile'''
mydict = {}
with open(labelfile, 'r') as f:
flines = f.readlines()
for line in flines:
data = line.split()
if int(data[1]) == 0:
mydict[data[0]] = int(data[1])
else:
assert(int(data[1])==2 or int(data[1])==1)
mydict[data[0]] = int(data[1])-1
return mydict
def readdicom(mydict):
'''read the dicom image, rename it consistently with the name in labels, crop and resize, and save as pickle.
mydict is the returned value of readlabel'''
img_ext = '.dcm'
img_fnames = [x for x in os.listdir(path) if x.endswith(img_ext)]
for f in img_fnames:
names = f.split('_')
if names[0] not in mydict:
print(names[0]+'occur error')
dicom_content = dicom.read_file(join(path,f))
img = dicom_content.pixel_array
'''fig = plt.figure()
ax1 = plt.subplot(3,3,1)
ax2 = plt.subplot(3,3,2)
ax3 = plt.subplot(3,3,3)
ax4 = plt.subplot(3,3,4)
ax5 = plt.subplot(3,3,5)
ax6 = plt.subplot(3,3,6)
ax7 = plt.subplot(3,3,7)
ax8 = plt.subplot(3,3,8)
ax9 = plt.subplot(3,3,9)
ax1.imshow(img, cmap='Greys_r')
ax1.set_title('Original')
ax1.axis('off')'''
thresh = threshold_otsu(img)
binary = img > thresh
#ax2.imshow(binary, cmap='Greys_r')
#ax2.set_title('mask')
#ax2.axis('off')
minx, miny = 0, 0
maxx, maxy = img.shape[0], img.shape[1]
for xx in xrange(img.shape[1]):
if sum(binary[xx, :]==0) < binary.shape[1]-60:
minx = xx
break
for xx in xrange(img.shape[0]-1,0,-1):
if sum(binary[xx, :]==0) < binary.shape[1]-60:
maxx = xx
break
if names[3] == 'R':
maxy = img.shape[1]
for yy in xrange(int(img.shape[1]*3.0/4), -1, -1):
if sum(binary[:,yy]==0) > binary.shape[0]-10:
miny = yy
break
else:
miny = 0
for yy in xrange(int(img.shape[1]/4.0), img.shape[1], 1):
if sum(binary[:,yy]==0) > binary.shape[0]-10:
maxy = yy
break
print(minx, maxx, miny, maxy)
#ax3.set_title('Foreground')
#ax3.imshow(img[minx:maxx+1, miny:maxy+1], cmap='Greys_r')
#ax3.axis('off')
img = img.astype(np.float32)
img1 = scipy.misc.imresize(img[minx:maxx+1, miny:maxy+1], (227, 227), interp='cubic')
with open(join(preprocesspath, names[0])+'227.pickle', 'wb') as outfile:
cPickle.dump(img1, outfile)
img1 = scipy.misc.imresize(img[minx:maxx+1, miny:maxy+1], (299, 299), interp='cubic')
with open(join(preprocesspath, names[0])+'299.pickle', 'wb') as outfile:
cPickle.dump(img1, outfile)
'''ax4.set_title('Resize')
ax4.imshow(img, cmap='Greys_r')
ax4.axis('off')
img = img.astype(np.float32)
img -= np.mean(img)
img /= np.std(img)
ax5.set_title('Norm')
ax5.imshow(img, cmap='Greys_r')
ax5.axis('off')
with open(join(preprocesspath, names[0])+'norm.pickle', 'wb') as outfile:
cPickle.dump(img, outfile)
#imgshape = img.shape
img = np.fliplr(img)
ax6.set_title('Flip')
ax6.imshow(img, cmap='Greys_r')
ax6.axis('off')
num_rot = np.random.choice(4) #rotate 90 randomly
img = np.rot90(img, num_rot)
ax7.set_title('Rotation')
ax7.imshow(img, cmap='Greys_r')
ax7.axis('off')
fig.savefig(join(preprocesspath, names[0])+'.jpg')
plt.close(fig)'''
def cvsplit(fold, totalfold, mydict):
'''get the split of train and test
fold is the returned fold th data, from 0 to totalfold-1
total fold is for the cross validation
mydict is the return dict from readlabel'''
skf = StratifiedKFold(n_splits=totalfold) # default shuffle is false, okay!
#readdicom(mydict)
y = mydict.values()
x = mydict.keys()
count = 0
for train, test in skf.split(x,y):
print(len(train), len(test))
if count == fold:
#print test
return train, test
count += 1
def cvsplitenhance(fold, totalfold, mydict, valfold=-1):
'''get the split of train and test
fold is the returned fold th data, from 0 to totalfold-1
total fold is for the cross validation
mydict is the return dict from readlabel
sperate the data into train, validation, test'''
skf = StratifiedKFold(n_splits=totalfold) # default shuffle is false, okay!
#readdicom(mydict)
y = mydict.values()
x = mydict.keys()
count = 0
if valfold == -1:
valfold = (fold+1) % totalfold
print('valfold'+str(valfold))
trainls, valls, testls = [], [], []
for train, test in skf.split(x,y):
print(len(train), len(test))
if count == fold:
#print test[:]
testls = test[:]
elif count == valfold:
valls = test[:]
else:
for i in test:
trainls.append(i)
count += 1
return trainls, valls, testls
def loadim(fname, preprocesspath=preprocesspath):
''' from preprocess path load fname
fname file name in preprocesspath
aug is true, we augment im fliplr, rot 4'''
ims = []
with open(join(preprocesspath, fname), 'rb') as inputfile:
im = cPickle.load(inputfile)
#up_bound = np.random.choice(174) #zero out square
#right_bound = np.random.choice(174)
img = im
#img[up_bound:(up_bound+50), right_bound:(right_bound+50)] = 0.0
ims.append(img)
inputfile.close()
return ims
def loaddata(fold, totalfold, usedream=True, aug=True):
'''get the fold th train and test data from inbreast
fold is the returned fold th data, from 0 to totalfold-1
total fold is for the cross validation'''
mydict = readlabel()
mydictkey = mydict.keys()
mydictvalue = mydict.values()
trainindex, testindex = cvsplit(fold, totalfold, mydict)
if aug == True:
traindata, trainlabel = np.zeros((6*len(trainindex),227,227)), np.zeros((6*len(trainindex),))
else:
traindata, trainlabel = np.zeros((len(trainindex),227,227)), np.zeros((len(trainindex),))
testdata, testlabel = np.zeros((len(testindex),227,227)), np.zeros((len(testindex),))
traincount = 0
for i in xrange(len(trainindex)):
ims = loadim(mydictkey[trainindex[i]]+'.pickle', aug=aug)
for im in ims:
traindata[traincount, :, :] = im
trainlabel[traincount] = mydictvalue[trainindex[i]]
traincount += 1
assert(traincount==traindata.shape[0])
testcount = 0
for i in xrange(len(testindex)):
ims = loadim(mydictkey[testindex[i]]+'.pickle', aug=aug)
testdata[testcount,:,:] = ims[0]
testlabel[testcount] = mydictvalue[testindex[i]]
testcount += 1
assert(testcount==testdata.shape[0])
if usedream:
outx, outy = extractdreamdata()
traindata = np.concatenate((traindata,outx), axis=0)
trainlabel = np.concatenate((trainlabel,outy), axis=0)
return traindata, trainlabel, testdata, testlabel
def loaddataenhance(fold, totalfold, valfold=-1, valnum=60):
'''get the fold th train and test data from inbreast
fold is the returned fold th data, from 0 to totalfold-1
total fold is for the cross validation'''
mydict = readlabel()
mydictkey = mydict.keys()
mydictvalue = mydict.values()
trainindex, valindex, testindex = cvsplitenhance(fold, totalfold, mydict, valfold=valfold)
traindata, trainlabel = np.zeros((len(trainindex),227,227)), np.zeros((len(trainindex),))
valdata, vallabel = np.zeros((len(valindex),227,227)), np.zeros((len(valindex),))
testdata, testlabel = np.zeros((len(testindex),227,227)), np.zeros((len(testindex),))
traincount = 0
for i in xrange(len(trainindex)):
ims = loadim(mydictkey[trainindex[i]]+'227.pickle')
for im in ims:
traindata[traincount, :, :] = im
trainlabel[traincount] = int(mydictvalue[trainindex[i]])
traincount += 1
assert(traincount==traindata.shape[0])
valcount = 0
for i in xrange(len(valindex)):
ims = loadim(mydictkey[valindex[i]]+'227.pickle')
valdata[valcount,:,:] = ims[0]
vallabel[valcount] = int(mydictvalue[valindex[i]])
valcount += 1
assert(valcount==valdata.shape[0])
testcount = 0
for i in xrange(len(testindex)):
#print mydictkey[testindex[i]]
ims = loadim(mydictkey[testindex[i]]+'227.pickle')
testdata[testcount,:,:] = ims[0]
testlabel[testcount] = int(mydictvalue[testindex[i]])
testcount += 1
assert(testcount==testdata.shape[0])
#print(valdata.shape)
randindex = np.random.permutation(valdata.shape[0])
valdata = valdata[randindex,:,:]
vallabel = vallabel[randindex]
#print(valdata.shape)
traindata = np.concatenate((traindata, valdata[valnum:,:,:]), axis=0)
trainlabel = np.concatenate((trainlabel, vallabel[valnum:]), axis=0)
valdata = valdata[:valnum,:,:]
vallabel = vallabel[:valnum]
maxvalue = (traindata.max()*1.0)
print('inbreast max %f', maxvalue)
traindata = traindata / maxvalue
valdata = valdata / maxvalue
testdata = testdata / maxvalue
print('train data feature')
#meanx = traindata.mean()
#stdx = traindata.std()
#traindata -= meanx
#traindata /= stdx
#valdata -= meanx
#valdata /= stdx
#testdata -= meanx
#testdata /= stdx
print(traindata.mean(), traindata.std(), traindata.max(), traindata.min())
print('val data feature')
print(valdata.mean(), valdata.std(), valdata.max(), valdata.min())
print('test data feature')
print(testdata.mean(), testdata.std(), testdata.max(), testdata.min())
#meandata = traindata.mean()
#stddata = traindata.std()
#traindata = traindata - meandata
#traindata = traindata / stddata
#valdata = valdata - meandata
#valdata = valdata / stddata
#testdata = testdata - meandata
#testdata = testdata / stddata
return traindata, trainlabel, valdata, vallabel, testdata, testlabel
if __name__ == '__main__':
traindata, trainlabel, testdata, testlabel = loaddata(0, 5)
print(sum(trainlabel), sum(testlabel))
traindata, trainlabel, valdata, vallabel, testdata, testlabel = loaddataenhance(0, 5)
print(sum(trainlabel), sum(vallabel), sum(testlabel))