字符串匹配问题,给定一串字符串,按照指定规则对其进行匹配,并将匹配的结果保存至output数组中,多个匹配项用空格间隔,最后一个不需要空格。
要求:
- 匹配规则中包含通配符?和*,其中?表示匹配任意一个字符,*表示匹配任意多个(>=0)字符。
- 匹配规则要求匹配最大的字符子串,例如a*d,匹配abbdd而非abbd,即最大匹配子串。
- 匹配后的输入串不再进行匹配,从当前匹配后的字符串重新匹配其他字符串。
请实现函数:
char* my_find(char input[], char rule[])
举例说明:
注意事项:
- 自行实现函数my_find,勿在my_find函数里夹杂输出,且不准用C、C++库,和Java的String对象;
- 请注意代码的时间,空间复杂度,及可读性,简洁性;
- input=aaa,rule=aa时,返回一个结果aa,即可。
本题与上述第三十章的题不同,上题字符串转换成整数更多考察对思维的全面性和对细节的处理,本题则更多的是编程技巧。闲不多说,直接上代码:
//copyright@cao_peng 2013/4/23
int str_len(char *a)
{
//字符串长度
if (a == 0)
{
return 0;
}
char *t = a;
for (; *t; ++t)
;
return (int) (t - a);
}
void str_copy(char *a, const char *b, int len)
{
//拷贝字符串 a = b
for (; len > 0; --len, ++b, ++a)
{
*a = *b;
}
*a = 0;
}
char *str_join(char *a, const char *b, int lenb)
{
//连接字符串 第一个字符串被回收
char *t;
if (a == 0)
{
t = (char *) malloc(sizeof(char) * (lenb + 1));
str_copy(t, b, lenb);
return t;
}
else
{
int lena = str_len(a);
t = (char *) malloc(sizeof(char) * (lena + lenb + 2));
str_copy(t, a, lena);
*(t + lena) = ' ';
str_copy(t + lena + 1, b, lenb);
free(a);
return t;
}
}
int canMatch(char *input, char *rule)
{
// 返回最长匹配长度 -1表示不匹配
if (*rule == 0)
{
//已经到rule尾端
return 0;
}
int r = -1 , may;
if (*rule == '*')
{
r = canMatch(input, rule + 1); // *匹配0个字符
if (*input)
{
may = canMatch(input + 1, rule); // *匹配非0个字符
if ((may >= 0) && (++may > r))
{
r = may;
}
}
}
if (*input == 0)
{
//到尾端
return r;
}
if ((*rule == '?') || (*rule == *input))
{
may = canMatch(input + 1, rule + 1);
if ((may >= 0) && (++may > r))
{
r = may;
}
}
return r;
}
char * my_find(char input[], char rule[])
{
int len = str_len(input);
int *match = (int *) malloc(sizeof(int) * len); //input第i位最多能匹配多少位 匹配不上是-1
int i, max_pos = - 1;
char *output = 0;
for (i = 0; i < len; ++i)
{
match[i] = canMatch(input + i, rule);
if ((max_pos < 0) || (match[i] > match[max_pos]))
{
max_pos = i;
}
}
if ((max_pos < 0) || (match[max_pos] <= 0))
{
//不匹配
output = (char *) malloc(sizeof(char));
*output = 0; // \0
return output;
}
for (i = 0; i < len;)
{
if (match[i] == match[max_pos])
{
//找到匹配
output = str_join(output, input + i, match[i]);
i += match[i];
}
else
{
++i;
}
}
free(match);
return output;
}
本题也可以直接写出DP(Dynamic Programming, 动态规划)方程,如下代码所示:
//copyright@chpeih 2013/4/23
char* my_find(char input[], char rule[])
{
//write your code here
int len1, len2;
for (len1 = 0; input[len1]; len1++);
for (len2 = 0; rule[len2]; len2++);
int MAXN = len1 > len2 ? (len1 + 1) : (len2 + 1);
int **dp;
//dp[i][j]表示字符串1和字符串2分别以i j结尾匹配的最大长度
//记录dp[i][j]是由之前那个节点推算过来 i*MAXN+j
dp = new int *[len1 + 1];
for (int i = 0; i <= len1; i++)
{
dp[i] = new int[len2 + 1];
}
dp[0][0] = 0;
for (int i = 1; i <= len2; i++)
dp[0][i] = -1;
for (int i = 1; i <= len1; i++)
dp[i][0] = 0;
for (int i = 1; i <= len1; i++)
{
for (int j = 1; j <= len2; j++)
{
if (rule[j - 1] == '*')
{
dp[i][j] = -1;
if (dp[i - 1][j - 1] != -1)
{
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i - 1][j] != -1 && dp[i][j] < dp[i - 1][j] + 1)
{
dp[i][j] = dp[i - 1][j] + 1;
}
}
else if (rule[j - 1] == '?')
{
if (dp[i - 1][j - 1] != -1)
{
dp[i][j] = dp[i - 1][j - 1] + 1;
}
else dp[i][j] = -1;
}
else
{
if (dp[i - 1][j - 1] != -1 && input[i - 1] == rule[j - 1])
{
dp[i][j] = dp[i - 1][j - 1] + 1;
}
else dp[i][j] = -1;
}
}
}
int m = -1;//记录最大字符串长度
int *ans = new int[len1];
int count_ans = 0;//记录答案个数
char *returnans = new char[len1 + 1];
int count = 0;
for (int i = 1; i <= len1; i++)
if (dp[i][len2] > m)
{
m = dp[i][len2];
count_ans = 0;
ans[count_ans++] = i - m;
}
else if (dp[i][len2] != -1 && dp[i][len2] == m)
{
ans[count_ans++] = i - m;
}
if (count_ans != 0)
{
int len = ans[0];
for (int i = 0; i < m; i++)
{
printf("%c", input[i + ans[0]]);
returnans[count++] = input[i + ans[0]];
}
for (int j = 1; j < count_ans; j++)
{
printf(" ");
returnans[count++] = ' ';
len = ans[j];
for (int i = 0; i < m; i++)
{
printf("%c", input[i + ans[j]]);
returnans[count++] = input[i + ans[j]];
}
}
printf("\n");
returnans[count++] = '\0';
}
return returnans;
}
/**
* 平均O(n+m) 最坏O(n*m)
* 约定 * : ANY>=0 , ? : ANY=1
*
* @author Spance.Wong
*/
static class WildCardMatcher {
/**
* 仅为了方便实验
*
* @param input
* @param pattern
* @return
*/
static List<String> matches(String input, String pattern) {
String[] pa = pattern.split("\\*+"); // 分割不是重点,故未做重点实现
return matches(input, pa);
}
/**
* 从input中查找通配符序列
*
* @param input
* @param patterns
* @return
*/
static List<String> matches(CharSequence input, String[] patterns) {
int n = input.length(), m = patterns.length;
List<String> result = new ArrayList<String>();
for (int i = 0; i < n; ) {
int left = -1, right = -1;
for (int j = 0; j < m; j++) { // 以i为起点,执行m趟匹配,每趟i至少前进p[j].length长度
long region = lookBehind(input, i, patterns[j]);
if (j != 0 && region >= 0) { // 模式序列的第二个开始使用贪婪匹配
long greedyRegion;
for (int k = (int) region + 1; ; k = (int) greedyRegion + 1) {
greedyRegion = lookBehind(input, k, patterns[j]);
if (greedyRegion > 0) // 贪婪找到,继续贪婪尝试
region = greedyRegion;
else
break;
}
}
if (region < 0) { // pattern[j]失败,则本趟失败
i = ((int) -region) + 1;
break;
} else {
i = (int) region + 1;
if (j == 0) // 模式序列的第一个找到,记左边界,在高32位
left = (int) (region >> 32);
if (j == m - 1) // 模式序列的最后一个找到,记右边界,在低32位
right = (int) region;
}
}
if (left >= 0 && right >= 0)
result.add(input.subSequence(left, right + 1).toString());
}
return result;
}
/**
* 在input的i位置开始向后扫描非贪婪查找pattern,在pattern尾匹配时回溯确认
*
* @param in
* @param i
* @param pattern
* @return
*/
static long lookBehind(CharSequence in, int i, CharSequence pattern) {
int len = in.length(), pLen = pattern.length(), _pMax = pLen - 1;
char pEnd = pattern.charAt(_pMax);
if (len - i >= pLen) {
for (i = i + _pMax; i < len; i++) { // 以 i + pLen - 1 起步
if (in.charAt(i) == pEnd || pEnd == '?') { // 与pa末尾相同,i即右边界
if (pLen == 1)
return ((long) i) << 32 | i;
for (int j = i - 1; j >= i - _pMax; j--) { // 则至多回溯pLen长找左边界
char p = pattern.charAt(_pMax - i + j);
if (in.charAt(j) == p || p == '?') {
if (j == i - _pMax) // 找到左边界即j
return ((long) j) << 32 | i;
} else
break;
}
}
}
}
return -i;
}
}