-
Notifications
You must be signed in to change notification settings - Fork 0
/
152_MaximumProductSubarray.java
46 lines (43 loc) · 1.46 KB
/
152_MaximumProductSubarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// Find the contiguous subarray within an array (containing at least one number) which has the largest product.
// For example, given the array [2,3,-2,4],
// the contiguous subarray [2,3] has the largest product = 6.
//space efficient dp
public class Solution {
public int maxProduct(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
int max = A[0], min = A[0], result = A[0];
for (int i = 1; i < A.length; i++) {
int temp = max;
max = Math.max(Math.max(max * A[i], min * A[i]), A[i]);
min = Math.min(Math.min(temp * A[i], min * A[i]), A[i]);
if (max > result) {
result = max;
}
}
return result;
}
}
//normal O(n) space dp
public class Solution {
public int maxProduct(int[] nums) {
int[] dpPos = new int[nums.length];
int[] dpNeg = new int[nums.length];
dpPos[0] = dpNeg[0] = nums[0];
int res = nums[0];
for(int i=1; i<nums.length; i++) {
if(nums[i] > 0) {
dpPos[i] = Math.max(nums[i] * dpPos[i - 1], nums[i]);
dpNeg[i] = nums[i] * dpNeg[i - 1];
res = Math.max(res, dpPos[i]);
}
else {
dpPos[i] = nums[i] * dpNeg[i - 1];
dpNeg[i] = Math.min(nums[i] * dpPos[i - 1], nums[i]);
res = Math.max(res, dpPos[i]);
}
}
return res;
}
}