forked from peteryuX/esrgan-tf2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_interp.py
108 lines (91 loc) · 4.33 KB
/
net_interp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""Implementation network interpolation and image interpolation proposed
from ESRGAN paper."""
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import os
import pathlib
import numpy as np
import tensorflow as tf
from modules.models import RRDB_Model
from modules.utils import (load_yaml, tensor2img, create_lr_hr_pair,
change_weight)
flags.DEFINE_string('cfg_path1', './configs/psnr.yaml', 'config file path 1')
flags.DEFINE_string('cfg_path2', './configs/esrgan.yaml', 'config file path 2')
flags.DEFINE_string('gpu', '0', 'which gpu to use')
flags.DEFINE_string('img_path', './data/PIPRM_3_crop.png',
'path to input image')
flags.DEFINE_boolean('save_image', True, 'save the result images.')
flags.DEFINE_boolean('save_ckpt', False, 'save all alpha ckpt.')
def main(_argv):
# init
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
logger = tf.get_logger()
logger.disabled = True
logger.setLevel(logging.FATAL)
cfg1 = load_yaml(FLAGS.cfg_path1)
cfg2 = load_yaml(FLAGS.cfg_path2)
# define network
model = RRDB_Model(None, cfg1['ch_size'], cfg1['network_G'])
# load checkpoint
checkpoint_dir1 = './checkpoints/' + cfg1['sub_name']
checkpoint1 = tf.train.Checkpoint(model=model)
if tf.train.latest_checkpoint(checkpoint_dir1):
checkpoint1.restore(tf.train.latest_checkpoint(checkpoint_dir1))
print("[*] load ckpt 1 from {}.".format(
tf.train.latest_checkpoint(checkpoint_dir1)))
else:
print("[*] Cannot find ckpt 1 from {}.".format(
tf.train.latest_checkpoint(checkpoint_dir1)))
vars1 = [v.numpy() for v in checkpoint1.model.trainable_variables]
checkpoint_dir2 = './checkpoints/' + cfg2['sub_name']
checkpoint2 = tf.train.Checkpoint(model=model)
if tf.train.latest_checkpoint(checkpoint_dir2):
checkpoint2.restore(tf.train.latest_checkpoint(checkpoint_dir2))
print("[*] load ckpt 2 from {}.".format(
tf.train.latest_checkpoint(checkpoint_dir2)))
else:
print("[*] Cannot find ckpt 2 from {}.".format(
tf.train.latest_checkpoint(checkpoint_dir2)))
vars2 = [v.numpy() for v in checkpoint2.model.trainable_variables]
# evaluation
print("[*] Processing on single image {}".format(FLAGS.img_path))
if not os.path.exists(FLAGS.img_path):
raise ValueError('Can not find image from {}.'.format(FLAGS.img_path))
raw_img = cv2.imread(FLAGS.img_path)
lr_img, hr_img = create_lr_hr_pair(raw_img, cfg1['scale'])
results_path = './results_interp/{}_{}/'.format(
cfg1['sub_name'], cfg2['sub_name'])
pathlib.Path(results_path).mkdir(parents=True, exist_ok=True)
interp_w = [np.zeros([hr_img.shape[0], 5, 3], np.uint8)]
interp_i = [np.zeros([hr_img.shape[0], 5, 3], np.uint8)]
for alpha in [1., 0.8, 0.6, 0.4, 0.2, 0.]:
print("[*] Process alpha = {:.1f}".format(alpha))
# interpolation weights
change_weight(model, vars1, vars2, alpha)
interp_w.append(tensor2img(model(lr_img[np.newaxis, :] / 255)))
interp_w.append(np.zeros([hr_img.shape[0], 5, 3], np.uint8))
if FLAGS.save_ckpt:
checkpoint2.save(results_path + 'alpha_{}'.format(alpha))
# interpolation image
change_weight(model, vars1, vars2, 0.0)
sr_img1 = tensor2img(model(lr_img[np.newaxis, :] / 255))
change_weight(model, vars1, vars2, 1.0)
sr_img2 = tensor2img(model(lr_img[np.newaxis, :] / 255))
interp_i.append((sr_img1.astype(np.float32) * (1 - alpha) +
sr_img2.astype(np.float32) * alpha).astype(np.uint8))
interp_i.append(np.zeros([hr_img.shape[0], 5, 3], np.uint8))
if FLAGS.save_image:
base_name = os.path.basename(FLAGS.img_path)
result_interp_w_path = results_path + 'weight_interp_' + base_name
result_interp_i_path = results_path + 'image_interp_' + base_name
print("[*] write the weight interp {}".format(result_interp_w_path))
cv2.imwrite(result_interp_w_path, np.concatenate(interp_w, 1))
print("[*] write the image interp {}".format(result_interp_i_path))
cv2.imwrite(result_interp_i_path, np.concatenate(interp_i, 1))
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass