forked from PatWie/tf_zmq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor_msg.py
65 lines (43 loc) · 1.44 KB
/
tensor_msg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# File: tensor_msg.py
# Author: Patrick Wieschollek <[email protected]>
import msgpack
import struct
import numpy as np
def pack(tensor_list):
"""Unpack tensor_msg send by c++ counterpart
Args:
tensor_list: list of numpy arrays
Returns:
received list of tensors as NumPy arrays with correct shape and dtype
"""
rsl = []
typs = [np.int32, np.float32, np.float64]
fmts = ['i', 'f', 'd']
for dp in tensor_list:
assert dp.dtype in [np.int32, np.float32, np.float64]
typ = typs.index(dp.dtype)
fmt = fmts[typ] * np.prod(dp.shape)
byts = struct.pack(fmt, *dp.flatten())
msg = [typ, dp.shape, byts]
rsl.append(msg)
return msgpack.packb(rsl, use_bin_type=True)
def unpack(data):
"""Unpack tensor_msg from binary data.
Args:
data: string containing plain bytes send over some pipe
Returns:
received list of tensors as NumPy arrays with correct shape and dtype
"""
data = msgpack.unpackb(data)
tensor_list = []
allowed_types = [('i', np.int32), ('f', np.float32), ('d', np.float64)]
for dp in data:
shape = dp[1]
fmt = allowed_types[dp[0]][0] * np.prod(shape)
typ = allowed_types[dp[0]][1]
arr = struct.unpack(fmt, dp[2])
arr = np.reshape(np.asarray(arr, dtype=typ), shape)
tensor_list.append(arr)
return tensor_list