-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinfer.lua
84 lines (72 loc) · 2.72 KB
/
infer.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
--require 'cutorch';
require 'cunn';
require 'cudnn'
require 'image'
require 'nn'
require 'nnx'
require 'optim'
require 'hdf5'
require './util.lua'
require './DataLoader.lua'
require './model.lua'
require 'paths'
local opts = paths.dofile('./opts.lua')
opt = opts.parse(arg)
-- Default user options
options = {
imgColorPath = opt.imgColorPath,
imgDepthPath = opt.imgDepthPath,
modelPath = '../affordance_model/model.t7',
resultsPath = opt.resultPath,
outputScale = 1/8,
imgHeight = 424,
imgWidth = 512
}
-- Parse user options from command line (i.e. imgColorPath=<image.png> imgDepthPath=<image.png> modelPath=<model.t7> th infer.lua)
for k,v in pairs(options) do options[k] = tonumber(os.getenv(k)) or os.getenv(k) or options[k] end
-- Set RNG seed
math.randomseed(os.time())
-- Load trained model and set to testing (evaluation) mode
-- print('Loading model: '..options.modelPath)
local model = torch.load(options.modelPath)
model:add(cudnn.SpatialSoftMax())
model = model:cuda()
model:evaluate()
-- Define dataset average constants (r,g,b)
local mean = {0.485,0.456,0.406}
local std = {0.229,0.224,0.225}
-- Initialize empty tensors for input and output
local input = {torch.Tensor(1, 3, options.imgHeight, options.imgWidth),torch.Tensor(1, 3, options.imgHeight, options.imgWidth)}
local results = torch.Tensor(1,3,options.imgHeight*options.outputScale,options.imgWidth*options.outputScale):float()
-- Load and pre-process color image (24-bit RGB PNG)
-- print('Pre-processing color image: '..options.imgColorPath)
local colorImg = image.load(options.imgColorPath)
for c=1,3 do
colorImg[c]:add(-mean[c])
colorImg[c]:div(std[c])
end
-- Load and pre-process depth image (16-bit PNG depth in deci-millimeters)
-- print('Pre-processing depth image: '..options.imgDepthPath)
local depth = image.load(options.imgDepthPath) -- When load the image it is divided by 65536
depth = depth*65536/10000 -- same scale with postprocess
depth = depth:clamp(0.0,1.2) -- Depth range of Intel RealSense SR300 (>1.2 ->1.2; <0 ->0)
local depthImg = depth:cat(depth,1):cat(depth,1)
for c=1,3 do
depthImg[c]:add(-mean[c])
depthImg[c]:div(std[c])
end
-- Copy images into input tensors and convert them to CUDA
input[1]:copy(colorImg:reshape(1, 3, options.imgHeight, options.imgWidth))
input[2]:copy(depthImg:reshape(1, 3, options.imgHeight, options.imgWidth))
input[1] = input[1]:cuda()
input[2] = input[2]:cuda()
-- -- Compute forward pass
-- print('Computing forward pass...')
local output = model:forward(input)
-- -- Save output test results
-- print('Saving results to: '..options.resultsPath)
results = output:float()
local resultsFile = hdf5.open(options.resultsPath, 'w')
resultsFile:write('results', results:float())
resultsFile:close()
-- print('Done.')