Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Project dependencies may have API risk issues #41

Open
PyDeps opened this issue Oct 27, 2022 · 0 comments
Open

Project dependencies may have API risk issues #41

PyDeps opened this issue Oct 27, 2022 · 0 comments

Comments

@PyDeps
Copy link

PyDeps commented Oct 27, 2022

Hi, In NerfingMVS, inappropriate dependency versioning constraints can cause risks.

Below are the dependencies and version constraints that the project is using

lpips==0.1.3
imageio
opencv-python
scikit-image==0.15.0
tqdm
wget
configargparse
tensorboard
h5py

The version constraint == will introduce the risk of dependency conflicts because the scope of dependencies is too strict.
The version constraint No Upper Bound and * will introduce the risk of the missing API Error because the latest version of the dependencies may remove some APIs.

After further analysis, in this project,
The version constraint of dependency imageio can be changed to >=1.1-linux32,<=2.19.3.
The version constraint of dependency tqdm can be changed to >=4.36.0,<=4.64.0.
The version constraint of dependency configargparse can be changed to >=0.9.3,<=1.5.3.
The version constraint of dependency h5py can be changed to >=2.5.0,<=3.7.0.

The above modification suggestions can reduce the dependency conflicts as much as possible,
and introduce the latest version as much as possible without calling Error in the projects.

The invocation of the current project includes all the following methods.

The calling methods from the imageio
imageio.imwrite
imageio.imread
The calling methods from the tqdm
tqdm.tqdm.write
tqdm.tqdm
tqdm.trange
The calling methods from the configargparse
configargparse.ArgumentParser
The calling methods from the h5py
h5py.File.close
h5py.File
The calling methods from the all methods
bistochastize
targets.cuda
data_term.item
numpy.genfromtxt
self.blurs.append
hourglass.HourglassModel
self.slice
self.GradientLoss
numpy.ndarray.max
pix_coords.permute.to
mask.sum
numpy.linalg.norm
Image
torch.cat
rgb.cpu.numpy
pred_confidence.data.unsqueeze
loss_list.torch.stack.mean
img_grad_y.abs
numpy.isfinite
scipy.sparse.diags
file.write
poses.np.moveaxis.astype
i.input_depth.data.cpu.numpy
self.S.dot
k.ret.torch.isinf.any
torch.clamp
super.__init__
i.d_gt.cpu
get_valid_idx
torch.Tensor.expand
h5py.File.create_dataset
torch.rand
sc_inv_full.item
i.prediction_d.data.cpu.numpy
torch.nn.Identity
i.pred_d.cpu.numpy
poses.torch.from_numpy.to.clone
list
numpy.array
torch.Tensor
torch.ones_like
eo.embed
i.d_gt.cpu.numpy
self.list.append
torch.pow
lpips_list.append
masks.torch.from_numpy.to
argparse.ArgumentParser
rays_o.torch.reshape.float.clone
numpy.argsort
self.netG.parameters
img2mse
read_cameras_text
render
i.full_flow.data.cpu.numpy
zip
time.time
torch.nn.DataParallel.load_state_dict
self.register_buffer
models.depth_priors.mannequin_challenge_model.MannequinChallengeModel.train
subprocess.check_output
torch.nn.init.xavier_normal_
minify
self.blur
input.view
models.depth_priors.mannequin_challenge_model.MannequinChallengeModel
h5py.File
skimage.io.imsave
lpips_metric.cpu
load_depths
k.all_ret.append
ret.append
rays_d.torch.reshape.float.clone
bds.np.moveaxis.astype.max
read_images_text
rgb_evaluation
rays_rgb.torch.Tensor.to.astype
network.cpu
rays_rgb.torch.Tensor.to
numpy.eye
disp.cpu
sigma_spatial.Iy.astype
prediction_d.data.cpu
render_path_spiral
torch.optim.lr_scheduler.StepLR
cv2.imread
img_grad_x.abs.mean
invK.torch.unsqueeze.repeat
lpips_list.np.concatenate.mean
torch.cumprod
net_.parameters
numpy.flatnonzero
numpy.mean
visualize_depth
X.copy
numpy.array.reshape
rays_o.torch.reshape.float
torch.autograd.set_detect_anomaly
Channels4
self.seq
Z.reshape.astype
numpy.expand_dims
self.Channels3.super.__init__
trans.append
f.read
scipy.sparse.csr_matrix.dot
torch.median
input_.cuda
numpy.array.append
compute_depth_loss.backward
numpy.matmul
numpy.arange
p_fn
vars.items
tqdm.tqdm.write
models.depth_priors.mannequin_challenge_model.MannequinChallengeModel.forward
coord.reshape
load_rgbs_np
self.new_model
i.self.views_linears
i.full_flow.data.cpu
input_images.data.cpu
torch.nn.init.kaiming_normal_
x.squeeze.squeeze
torch.nn.Sequential
i.gt_mask.cpu.numpy
depths.cpu.numpy
prediction_d.data.cpu.torch.exp.unsqueeze
self.loss_joint_var.backward
targets.unsqueeze
f.strip.replace
numpy.argmin
c.t.bs_params.grid.BilateralSolver.solve.reshape
numpy.percentile
models.depth_priors.mannequin_challenge_model.MannequinChallengeModel.eval
self.input.cuda
ssim_list.append
numpy.sqrt
render_rays
numpy.searchsorted
numpy.dstack
depth_grad_yx.abs.mean
img.dim
numpy.tensordot
im.qvec2rotmat
compute_errors
depth_model.model.netG.state_dict
i.input_imgs.cpu.numpy
numpy.load.transpose
numpy.argmax
torch.FloatTensor.unsqueeze
self.backward_G
image_name.replace.split
optimizer_depth.zero_grad
input.size
img_lap.mean.exp.squeeze
inception
depths.torch.from_numpy.to
numpy.shape
main
optimizer_depth.step
float
mse2psnr
self.model.netG.forward
run_network
torchvision.transforms.ToTensor
lpips.LPIPS
batch.depth_model.forward.cpu
numpy.load.astype
torch.sigmoid.cpu
torch.nn.BatchNorm2d
self.create_embedding_fn
f.endswith
predicts.transpose.torch.from_numpy.type
numpy.sum
bds.np.moveaxis.astype
grid.splat
self.rgb_linear
grad_term.item
torch.nn.Sigmoid
numpy.column_stack
torch.matmul.unsqueeze
im.astype
any
W.reshape.astype
perm.append
numpy.linalg.eigh
depth_confidences.torch.reshape.float
numpy.logical_not
tqdm.trange
torch.transpose
numpy.concatenate.append
poses.astype.sum
masks.append
self.criterion_joint
set
src.depth_priors.train
metadata.unsqueeze.cuda
torch.nn.functional.relu
self.writer.add_image
torch.nn.Linear
mannequin_challenge.options.train_options.TrainOptions
LaplacianLayer
i.input_imgs.cpu
numpy.newaxis.pts_arr.transpose
numpy.stack.split
depth.view
self.HourglassModel.super.__init__
struct.unpack
w.reshape.reshape
self.write_summary
numpy.max
self.convs.append
numpy.maximum.mean
self.grid.slice
torch.log
self.laplacian_func
numpy.moveaxis
self.Data_Loss
network.cpu.state_dict
cal_depth_confidences
int
vec_from_R
torch.abs
ndc_rays
numpy.linalg.inv.transpose
skimage.measure.compare_ssim
depth_priors.torch.reshape.float
torch.utils.tensorboard.SummaryWriter
self.criterion_joint.compute_rmse_error
src.initialize.main
torch.optim.Adam.step
torch.stack.cpu
skimage.transform.resize
torch.FloatTensor.gts.transpose.torch.from_numpy.type.cuda
self.model.switch_to_train
depth_grad_yx.abs
image_name.split
gts.astype.max
open
sigma_chroma.im_yuv.astype
valid_z.max
self.LaplacianLayer.super.__init__
W.reshape
embed_fns.append
torch.nn.init.normal_
disp.cpu.numpy
poses.torch.Tensor.to
mse2psnr.item
self.Dn.dot
i.mvs_depth.data.cpu.numpy
solve_image_ldl3
img_name.split
numpy.unique
read_model
torch.inverse
sigma_luma.im_yuv.astype
fid.seek
self.opt.gpu_ids.split
self.Channels4.super.__init__
i.i.cam_points.repeat
pred_confidence.data.unsqueeze.repeat
configargparse.ArgumentParser
Project3D
viewdirs.torch.reshape.float.expand
torch.nn.init.orthogonal_
multiprocessing.Pool
temp.cpu.numpy
self.estimate_depth
cv2.imwrite
images.reshape.cuda
scipy.sparse.linalg.cg
numpy.load.reshape
self.targets.cuda
format
fid.readline
i.targets.split
poses_avg
raw2outputs
torch.stack
torch.unsqueeze
imgs.np.moveaxis.astype.split
exit
EPSILON.mask.data.pred_d.data.mask.data.gt_d.data.torch.median.item
i.pred_confidence.data.cpu
depth_grad_y2.abs
torch.norm
functools.partial
A.diagonal
self.load_network
os.listdir
i_train.len.np.arange.repeat
load_gt_depths
fid.readline.split
i.t.t
src.run_nerf.train
depth_model.model.netG.load_state_dict
i.human_mask.data.cpu.numpy
self.Data_Human_Loss
torch.nn.Sequential.children
meshgrid.np.stack.astype
torch.FloatTensor
self.criterion_joint.compute_si_rmse
os.path.exists
img_lap.mean.exp.view
numpy.random.shuffle
self.uncertainty_layer
fid.read
self.criterion_joint.get_loss_var
self.netG.train
self.optimizer_G.zero_grad
numpy.reshape
rays_d.torch.reshape.float
numpy.logical_or
img_grad_y.abs.mean
input.unsqueeze.unsqueeze
self.model.netG.parameters
init_weights
numpy.cross
predicts.gts.mean.mean.mean
h5py.File.close
zipfile.ZipFile
A_i.A_i.np.transpose.mean
b_i.mean
torch.nn.functional.conv2d.abs
self.netG.eval
Channels1
depth.cpu
bds.np.moveaxis.astype.min
numpy.uint8
torch.randn
compute_depth_loss
img_lap.mean.exp.mean
self.model.netG.state_dict
numpy.linspace
sc_inv_human.item
torch.sum.item
mannequin_challenge.options.train_options.TrainOptions.initialize
numpy.random.rand
_load_data
targets.cuda.autograd.Variable.unsqueeze
gts.astype.transpose
gts.astype.astype
networks.get_scheduler
load_point_vis
self.save_network
network_query_fn
cal_depth_confidences.astype
BilateralSolver
batch.depth_model.forward.cpu.numpy
get_rays_np
multiprocessing.Pool.close
self.splat
torch.autograd.Variable
image_name.replace.replace
prediction_log_d.squeeze
H.focal.W.focal.torch.FloatTensor.to
cv2.resize.astype
img_lap.mean.exp
os.path.join
sc_inv_env.item
recenter_poses
numpy.isnan
self.HourglassVariant.super.__init__
torch.matmul
z_vals.expand.expand
weight_y.depth_grad_y.abs.weight_x.depth_grad_x.abs.mean
read_images_binary.items
pil_loader
torch.randperm
SuppressedStdout
os.path.isfile
self.parser.parse_args
torch.max
i.i.T.repeat
render_path
torch.ones
f.w.h.np.array.reshape
numpy.zeros
images.astype.astype
depth_confidences.append
utils.colmap_read_model.read_cameras_binary
torch.abs.sum
self.scheduler.step
self.feature_linear
local_path.rstrip.rstrip
torchvision.utils.make_grid
tran_dis.sum.sum
line.strip.strip
self.model.prediction_d.squeeze
self.netG.forward
torch.isinf
torch.load
network.cuda
torch.meshgrid
self.grid.splat
wget.download
torch.split
torch.FloatTensor.view.cuda
numpy.ndarray.min
gt_depths_valid.append
os.getcwd
saved_imgs.astype.astype
self.alpha_linear
netchunk.fn.batchify
os.remove
Z.reshape
networks.print_network
k.ret.torch.isnan.any
torch.nn.functional.grid_sample
depth_grad_y2.abs.mean
utils.colmap_read_model.read_points3d_binary
predicts.astype.astype
sh.np.array.reshape
dict
torch.sum
pix_coords.permute.permute
torch.matmul.view
utils.colmap_read_model.read_images_binary
self.inception.super.__init__
numpy.abs
Channels3
torch.autograd.Variable.size
angles.append
i.input_depth.data.cpu
depths.append
self.pred_confidence.squeeze
images.torch.Tensor.to
super
read_images_binary
sorted
f.readlines
print
numpy.sin
numpy.save
depth_grad_x.abs
numpy.transpose
min_line_dist
pred_confidence.squeeze.squeeze
ValueError
Project3D_depth
configargparse.ArgumentParser.add_argument
gradient
mkdir
numpy.log
qvec2rotmat
angle_dis.sum.sum
numpy.linalg.inv
render_poses.np.array.astype
load_rgbs.clone
get_embedder
isinstance
torch.device
poses_tensor.shape.bottom.repeat.to.repeat
sys.stdout.close
bs_params.grid.BilateralSolver.solve
errors.np.array.mean.tolist
self.initialize
numpy.arcsin
im.tvec.reshape
numpy.log10
numpy.meshgrid
depth_grad_y.abs
options.config_parser.parse_args
util.util.mkdirs
numpy.median
self.forward
i.pred_confidence.data.cpu.numpy
numpy.dstack.reshape
self.criterion_joint.compute_l1_rel_error
metadata.unsqueeze
f.writelines
batchify_rays
base_options.BaseOptions.initialize
param.numel
numpy.tile
i.imgs_down.astype
self.JointLoss.super.__init__
torch.from_numpy.view
torch.sqrt
rot.transpose
numpy.square
i.image_list.split
_minify
spherify_poses
prediction_d.data.cpu.torch.exp.unsqueeze.repeat
prediction_d.data.cpu.torch.exp.unsqueeze.repeat.numpy
read_points3D_text
i.mvs_depth.data.cpu
i.input_confidence.data.cpu.numpy
array.np.transpose.squeeze
self.pred_layer
numpy.fromfile
vars
torch.nn.AvgPool2d
input.dim
join
self._compute_factorization
load_llff.load_llff_data
render_poses.np.array.astype.append
i.pred_d.cpu
depth_confidence.mean.cpu.numpy
torch.isnan
self.grid.blur
torch.no_grad
depth_confidence.mean.cpu
Channels2
torch.mean
get_model_from_url
NeRF
numpy.empty_like
f.extractall
torch.nn.DataParallel.to
FixedMcModel
self.optimizer_G.step
torch.FloatTensor.view
create_nerf
poses_arr.reshape.transpose
numpy.ones_like
imgs.np.moveaxis.astype
numpy.stack
sys.path.append
K.torch.unsqueeze.repeat
cv2.applyColorMap
ssim_list.np.array.mean
args.config.open.read
numpy.maximum
networks.JointLoss
numpy.load
sm_term.item
i.prediction_d.data.cpu
sc_inv_intra.item
imread
pred_depths_valid.append
predicts.gts.mean.mean
numpy.ones
self.parser.add_argument
self.laplacian_func.mean
depth_grad_xy.abs
rgbs.append
valid_z.mean
predicts.gts.mean
imageio.imwrite
numpy.clip
errors.np.array.mean
torch.optim.Adam.load_state_dict
downsample
line.strip.split
BackprojectDepth
total_loss.item
max
read_array
i.pred_d.data.cpu
input.unsqueeze
viewdirs.torch.reshape.float
depth_grad_xy.abs.mean
numpy.linalg.lstsq
torch.optim.Adam.zero_grad
images.reshape.reshape
pix_coords_ref.i_train.depths.unsqueeze.F.grid_sample.squeeze
BilateralGrid
fn
torch.nn.UpsamplingBilinear2d
i.poses.ravel
numpy.squeeze
self.S.T.dot
loss.backward
torch.nn.init.constant_
numpy.cos
predicts.astype.transpose
filt
os.chdir
numpy.broadcast_to
p34_to_44
self.compute_image_aware_1st_smoothness_cost
depth_evaluation
far_bound.near_bound.depth_confidences.torch.clamp.depth_priors.unsqueeze
utils.pose_utils.gen_poses
i.self.pts_linears
render_kwargs_test.update
compute_depth_loss.item
numpy.ceil
loss.item
rgb2yuv
self.LaplacianSmoothnessLoss
array.reshape.reshape
Embedder
pred_d.unsqueeze
torch.reshape
sys.exit
i.poses.copy
CameraModel
torch.save
map
PIL.Image.open
embed_fn
torch.abs.topk
hasattr
torch.cuda.is_available
classname.find
src.filter.main
collections.namedtuple
str
read_points3d_binary
self._hash_coords
colmap_depths.shape.np.ones.astype
x.np.clip.astype
depth_confidences.torch.from_numpy.to
torch.FloatTensor.predicts.transpose.torch.from_numpy.type.cuda
args.use_viewdirs.input_ch_views.skips.output_ch.input_ch.args.netwidth.args.netdepth.NeRF.to
self.opt.gpu_ids.append
len
i.pred_d.data.cpu.numpy
read_next_bytes.decode
depth_grad_x2.abs.mean
os.makedirs
Camera
numpy.random.seed
torch.optim.lr_scheduler.ReduceLROnPlateau
read_next_bytes
errors.append
load_img_list
tuple
pix_coords.permute.view
mse.np.log10.mean
f.strip
mask_0.size
tqdm.tqdm
torch.linspace
poses.torch.from_numpy.to
sigma_spatial.Ix.astype
optimizer_depth.state_dict
torch.set_default_tensor_type
batchify
self.prediction_d.squeeze
self.model.switch_to_eval
act_fn
depth.cpu.numpy
torch.utils.tensorboard.SummaryWriter.add_scalar
utils.colmap_read_model.read_cameras_binary.keys
load_rgbs
poses.astype.mean
i_train.depths.unsqueeze
to_tensor
to8b
numpy.sqrt.mean
torch.mul
depth_model
NotImplementedError
lpips_metric
loss_list.append
parser.parser.parse_args
save_poses
models.depth_priors.mannequin_challenge_model.MannequinChallengeModel.parameters
torch.sigmoid
read_ply_mask
create_depth_model
depth_grad_x2.abs
log_pred.log_target.sum
torchvision.transforms.Resize
get_rays
options.config_parser
poses_tensor.shape.bottom.repeat.to
self.NeRF.super.__init__
poses.astype.astype
self.output_linear
render_kwargs_train.update
calculate_coords
align_scales
args.use_viewdirs.input_ch_views.skips.output_ch.input_ch.args.netwidth.args.netdepth.NeRF.to.load_state_dict
numpy.concatenate
normalize
conv
imageio.imread
i.gt_mask.cpu
line.strip
f_list.readlines
self.list
numpy.dot
grid.blur
torch.multiprocessing.set_start_method
load_colmap_data
c2w.expand
center.poses.mean
torch.stack.append
self.targets.cuda.autograd.Variable.unsqueeze
torch.optim.lr_scheduler.LambdaLR
enumerate
planar_filter
i.human_mask.data.cpu
raw2alpha
i.input_confidence.data.cpu
range
embeddirs_fn
torch.exp.squeeze
torch.nn.DataParallel
img.convert
scipy.sparse.csr_matrix
torch.nn.functional.conv2d
args.use_viewdirs.input_ch_views.skips.output_ch.input_ch.args.netwidth.args.netdepth.NeRF.to.parameters
viewmatrix
render_kwargs_train.state_dict
os.path.dirname
img_grad_x.abs
torch.nn.Conv2d
train
src.evaluation.main
Point3D
j.t.t
multiprocessing.Pool.join
time.time.time
self.writer.add_scalar
cv2.resize
read_cameras_binary
cal_neighbor_idx
opt_file.write
getattr
torch.from_numpy
torch.nn.ModuleList
i_test.len.np.arange.repeat
torch.optim.Adam.state_dict
torch.nn.DataParallel.apply
gt_rgbs.pred_rgbs.np.abs.mean
self.Channels1.super.__init__
valid_z.min
torch.optim.Adam
self.model.prediction_d.reshape
gts.transpose.torch.from_numpy.type
depth_priors.torch.from_numpy.to
resize
pred_d.unsqueeze.repeat
sc_inv_inter.item
numpy.stack.append
self.Channels2.super.__init__
torch.nn.ReLU
depth_confidence.mean.cpu.numpy.mean
load_colmap
multiprocessing.Pool.map_async
targets.unsqueeze.repeat
torch.exp

@developer
Could please help me check this issue?
May I pull a request to fix it?
Thank you very much.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant