We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好!在运行您的代码时,我发现在Net类的loss函数中:
def loss(self, user_tensor, item_tensor) : user_tensor = user_tensor.view(-1) item_tensor = item_tensor.view(-1) out = self.forward() user_score = out[user_tensor] item_score = out[item_tensor] # Here score = torch.sum(user_score*item_score, dim=1).view(-1, 2) loss = -torch.mean(torch.log(torch.sigmoid(torch.matmul(score, self.weight)))) reg_embedding_loss = (self.id_embedding[user_tensor]**2 + self.id_embedding[item_tensor]**2).mean()+(self.v_gcn.preference**2).mean() reg_loss = self.reg_weight * (reg_embedding_loss) return loss+reg_loss, reg_loss, loss, reg_embedding_loss, reg_embedding_loss
从仓库中提供的movielens sample数据集来看,#user = 100, #item = 1141, 故out.shape[0]是1241. 然而在代码的dataset写法中,并没有对positive item的index做特殊处理,即范围仍是[0, 1140] , 所以在如上的loss函数中,user[0]和positive item[0]对应着相同的embedding, 此处是否有问题呢?感谢您的回复!
The text was updated successfully, but these errors were encountered:
您好,感谢您对于我们工作的关注。我们对于user和item是统一编码的,也就是说item是从num_user开始进行编号的。不过对于toy dataset,我并没有单独进行处理。
Sorry, something went wrong.
No branches or pull requests
您好!在运行您的代码时,我发现在Net类的loss函数中:
从仓库中提供的movielens sample数据集来看,#user = 100, #item = 1141, 故out.shape[0]是1241. 然而在代码的dataset写法中,并没有对positive item的index做特殊处理,即范围仍是[0, 1140] , 所以在如上的loss函数中,user[0]和positive item[0]对应着相同的embedding, 此处是否有问题呢?感谢您的回复!
The text was updated successfully, but these errors were encountered: