forked from npatwari/rti
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrti.py
286 lines (241 loc) · 9.95 KB
/
rti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#! /usr/bin/env python
#
# LICENSE:
# Copyright (C) 2016 Neal Patwari
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Author: Neal Patwari, [email protected]
#
# Version History:
#
# Version 1.0: Initial Release. 27 Oct 2014.
#
import sys
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np
import numpy.linalg as linalg
import scipy.spatial.distance as dist
matplotlib.rc('xtick', labelsize=16)
matplotlib.rc('ytick', labelsize=16)
# ########################################
# Code to provide a fixed-length buffer data type
class FixedLenBuffer:
def __init__(self, initlist):
self.frontInd = 0
self.data = initlist
self.len = len(initlist)
def list(self):
oldest = self.frontInd + 1
return self.data[oldest:] + self.data[:oldest]
# Append also deletes the oldest item
def append(self, newItem):
self.frontInd += 1
if self.frontInd >= self.len:
self.frontInd = 0
self.data[self.frontInd] = newItem
# Returns the "front" item
def mostRecent(self):
return self.data[self.frontInd]
# Returns the N items most recently appended
def mostRecentN(self, N):
return [self.data[(self.frontInd - i) % self.len] for i in range(N - 1, -1, -1)]
# Returns the variance of the data
def var(self):
return np.var(self.data)
# ########################################
# Convert Tx, Rx, and Ch numbers to link number
def linkNumForTxRxChLists(tx, rx, ch, nodeList, channelList):
if (nodeList.count(tx) == 0) or (nodeList.count(rx) == 0) or (channelList.count(ch) == 0):
sys.exit("Error in linkNumForTxRx: tx, rx, or ch number invalid")
rx_enum = nodeList.index(rx)
tx_enum = nodeList.index(tx)
ch_enum = channelList.index(ch)
nodes = len(nodeList)
links = nodes * (nodes - 1)
linknum = ch_enum * links + tx_enum * (nodes - 1) + rx_enum
if rx_enum > tx_enum:
linknum -= 1
return linknum
# Convert link number to Tx and Rx numbers
def txRxForLinkNum(linknum, nodes):
tx = linknum / (nodes - 1)
rx = linknum % (nodes - 1)
if rx >= tx:
rx += 1
if tx >= nodes:
sys.exit("Error in txRxForLinkNum: linknum too high for nodes value")
return tx, rx
# Convert link number to Tx, Rx, and channel numbers
def txRxChForLinkNum(linknum, nodeList, channelList):
nodes = len(nodeList)
links = nodes * (nodes - 1)
ch_enum = linknum / links
remLN = linknum % links
tx_enum = remLN / (nodes - 1)
rx_enum = remLN % (nodes - 1)
if rx_enum >= tx_enum:
rx_enum += 1
if (tx_enum >= nodes) | (ch_enum >= len(channelList)):
sys.exit("Error in txRxForLinkNum: linknum or ch too high for nodes, channels values")
else:
ch = channelList[ch_enum]
tx = nodeList[tx_enum]
rx = nodeList[rx_enum]
return tx, rx, ch
def calcGridPixelCoords(personLL, personUR, delta_p):
xVals = np.arange(personLL[0], personUR[0], delta_p)
yVals = np.arange(personLL[1], personUR[1], delta_p)
cols = len(xVals)
pixels = cols * len(yVals) # len(yVals) is the number of rows of pixels
# fill the first row, then the 2nd row, etc.
pixelCoords = np.array([[xVals[i % cols], yVals[i / cols]] for i in range(pixels)])
return pixelCoords, xVals, yVals
# Plot the node/sensor locations with their node numbers
def plotLocs(nodeLocs):
plt.plot(nodeLocs[:, 0], nodeLocs[:, 1], '.', markersize=14.0)
# Increase the axes to show full map.
xmin, xmax, ymin, ymax = plt.axis()
deltay = ymax - ymin
epsy = deltay * 0.1
deltax = xmax - xmin
epsx = deltax * 0.1
plt.axis((xmin - epsx, xmax + epsx, ymin - epsy, ymax + epsy))
for number, coord in enumerate(nodeLocs):
plt.text(coord[0], coord[1] + epsy * 0.2, str(number + 1),
# +1 to start node numbers at 1 instead of 0
horizontalalignment='center', verticalalignment='bottom', fontsize=16)
plt.xlabel('X Coordinate (m)', fontsize=18)
plt.ylabel('Y Coordinate (m)', fontsize=18)
plt.grid()
# Plot the estimated image. Label the X axis with the actual time (ms), and
# mark the true coordinate with an X if it is known, and mark the sensor coordinates.
def plotImage(image, figNumber, sensorCoords, imageExtent, vmaxval, units, time_ms=None,
actualCoord=None):
# Replace the image already in Figure figNumber
plt.figure(figNumber)
plt.cla()
plotLocs(sensorCoords)
imhandle = plt.imshow(image, interpolation='none', origin='lower', extent=imageExtent, vmin=0,
vmax=vmaxval)
plt.ylabel('Y Coordinate (' + units + ')')
if time_ms is None:
plt.xlabel('X Coordinate (' + units + ')')
else:
plt.xlabel('X Coordinate (' + units + ') at time ' + str(time_ms))
if actualCoord is not None:
if len(actualCoord) > 0:
plt.text(actualCoord[0], actualCoord[1], 'X', horizontalalignment='center',
verticalalignment='center')
plt.draw()
# Do initial calculations to compute the RTI projection matrix
#
# Inputs: nodeLocs: Sensor node locations (nodes x 2)
# delta_p: distance between pixel centers (meters)
# sigmax2: variance of any pixel's image value (units^2)
# delta: correlation distance (distance at which
# correlation coefficient is e^-1, meters)
# excessPathLen: the size of the ellipse (meters)
#
# Outputs:
# inversion: a pixels x links projection matrix
# xVals, yVals: x and y coordinates of pixel grid.
#
# Author: Neal Patwari, 12 July 2012
#
def initRTI(nodeLocs, delta_p, sigmax2, delta, excessPathLen):
# Set up pixel locations as a grid.
personLL = nodeLocs.min(axis=0)
personUR = nodeLocs.max(axis=0)
pixelCoords, xVals, yVals = calcGridPixelCoords(personLL, personUR, delta_p)
pixels = pixelCoords.shape[0]
# plt.figure(3)
# plotLocs(pixelCoords)
# Find distances between pixels and transceivers
DistPixels = dist.squareform(dist.pdist(pixelCoords))
DistPixelAndNode = dist.cdist(pixelCoords, nodeLocs)
DistNodes = dist.squareform(dist.pdist(nodeLocs))
# Find the (inverse of) the Covariance matrix between pixels
CovPixelsInv = linalg.inv(sigmax2 * np.exp(-DistPixels / delta))
# Calculate weight matrix for each link.
nodes = len(nodeLocs)
links = nodes * (nodes - 1)
W = np.zeros((links, pixels))
for ln in range(links):
txNum, rxNum = txRxForLinkNum(ln, nodes)
ePL = DistPixelAndNode[:, txNum] + DistPixelAndNode[:, rxNum] - DistNodes[txNum, rxNum]
inEllipseInd = np.argwhere(ePL < excessPathLen)
pixelsIn = len(inEllipseInd)
if pixelsIn > 0:
W[ln, inEllipseInd] = 1.0 / float(pixelsIn)
# Compute the projection matrix
inversion = np.dot(linalg.inv(np.dot(W.T, W) + CovPixelsInv), W.T)
return inversion, xVals, yVals
def callRTI(linkMeas, inversion, xValsLen, yValsLen):
temp = np.dot(inversion, linkMeas)
temp.resize(yValsLen, xValsLen)
return temp
def imageMaxCoord(imageMat, xVals, yVals):
rowMaxInd, colMaxInd = np.unravel_index(imageMat.argmax(), imageMat.shape)
return xVals[colMaxInd], yVals[rowMaxInd]
# Sum the numbers in each column of the matrix data which have the highest values.
# Assume that, in row i, the last column of maxInds contains the index of the row in data
# which has the highest value in column i. The 2nd last column in maxInds contains the index of
# the row in data which has the 2nd highest value in column i. Etc.
# Assume that topChs <= channels.
def sumTopRows(data, maxInds, topChs):
channels, cols = data.shape
outVec = np.zeros(cols)
for i in range(cols):
for j in range(topChs):
outVec[i] += data[maxInds[i, channels - 1 - j], i]
return outVec
# Purpose: Determine the actual coordinate at a given time.
# Inputs:
# t_ms: a time in ms
# pivotCoords: a list of coordinates a person may "hit"
# pathInd: the indices of the row in pivotCoords that the person hits them
# startPathTime: the time at which the person hits his first pivot point
# speed: in pivot points "hit" per ms
def calcActualPosition(t_ms, pivotCoords, pathInd, startPathTime, speed):
endPathTime = startPathTime + (len(pathInd) - 1) / speed
if (t_ms < startPathTime) or (t_ms >= endPathTime):
actCoord = []
else:
point_real = (t_ms - startPathTime) * speed
point_int = np.floor(point_real)
point_frac = point_real - point_int
prevCoord = pivotCoords[pathInd[point_int], :]
nextCoord = pivotCoords[pathInd[point_int + 1], :]
actCoord = prevCoord * (1 - point_frac) + nextCoord * point_frac
return actCoord
# Calculate the penalized RMSE between the actualCoords and the estCoords
def prmse(actualCoord, estCoord, noPersonKey, penalty):
rows = max(1.0, actualCoord.shape[0])
sumSE = 0.0
eps = 0.01
# Loop here line by line and add in the penalized error
for i, ac in enumerate(actualCoord):
noP = np.abs(ac[0] - noPersonKey) < eps
estNoP = np.abs(estCoord[i, 0] - noPersonKey) < eps
ec = estCoord[i, :]
if noP and not estNoP:
sumSE += penalty
elif estNoP and not noP:
sumSE += penalty
else:
sumSE += np.sum((ac - ec) ** 2.)
return np.sqrt(sumSE / rows)