This repository has been archived by the owner on May 31, 2023. It is now read-only.
forked from chai2010/webp
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrgb48.go
198 lines (177 loc) · 4.58 KB
/
rgb48.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright 2014 <chaishushan{AT}gmail.com>. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package webp
import (
"image"
"image/color"
"reflect"
)
var (
_ image.Image = (*RGB48Image)(nil)
_ MemP = (*RGB48Image)(nil)
)
type RGB48Image struct {
XPix []uint8 // XPix use Native Endian (same as MemP) !!!
XStride int
XRect image.Rectangle
}
func (p *RGB48Image) MemPMagic() string {
return MemPMagic
}
func (p *RGB48Image) Bounds() image.Rectangle {
return p.XRect
}
func (p *RGB48Image) Channels() int {
return 3
}
func (p *RGB48Image) DataType() reflect.Kind {
return reflect.Uint16
}
func (p *RGB48Image) Pix() []byte {
return p.XPix
}
func (p *RGB48Image) Stride() int {
return p.XStride
}
func (p *RGB48Image) ColorModel() color.Model { return color.RGBA64Model }
func (p *RGB48Image) At(x, y int) color.Color {
if !(image.Point{x, y}.In(p.XRect)) {
return color.RGBA64{}
}
i := p.PixOffset(x, y)
if isLittleEndian {
return color.RGBA64{
R: uint16(p.XPix[i+1])<<8 | uint16(p.XPix[i+0]),
G: uint16(p.XPix[i+3])<<8 | uint16(p.XPix[i+2]),
B: uint16(p.XPix[i+4])<<8 | uint16(p.XPix[i+4]),
A: 0xffff,
}
} else {
return color.RGBA64{
R: uint16(p.XPix[i+0])<<8 | uint16(p.XPix[i+1]),
G: uint16(p.XPix[i+2])<<8 | uint16(p.XPix[i+3]),
B: uint16(p.XPix[i+4])<<8 | uint16(p.XPix[i+5]),
A: 0xffff,
}
}
}
func (p *RGB48Image) RGB48At(x, y int) [3]uint16 {
if !(image.Point{x, y}.In(p.XRect)) {
return [3]uint16{}
}
i := p.PixOffset(x, y)
if isLittleEndian {
return [3]uint16{
uint16(p.XPix[i+1])<<8 | uint16(p.XPix[i+0]),
uint16(p.XPix[i+3])<<8 | uint16(p.XPix[i+2]),
uint16(p.XPix[i+5])<<8 | uint16(p.XPix[i+4]),
}
} else {
return [3]uint16{
uint16(p.XPix[i+0])<<8 | uint16(p.XPix[i+1]),
uint16(p.XPix[i+2])<<8 | uint16(p.XPix[i+3]),
uint16(p.XPix[i+4])<<8 | uint16(p.XPix[i+5]),
}
}
}
// PixOffset returns the index of the first element of XPix that corresponds to
// the pixel at (x, y).
func (p *RGB48Image) PixOffset(x, y int) int {
return (y-p.XRect.Min.Y)*p.XStride + (x-p.XRect.Min.X)*3
}
func (p *RGB48Image) Set(x, y int, c color.Color) {
if !(image.Point{x, y}.In(p.XRect)) {
return
}
i := p.PixOffset(x, y)
c1 := color.RGBA64Model.Convert(c).(color.RGBA64)
if isLittleEndian {
p.XPix[i+1] = uint8(c1.R >> 8)
p.XPix[i+0] = uint8(c1.R)
p.XPix[i+3] = uint8(c1.G >> 8)
p.XPix[i+2] = uint8(c1.G)
p.XPix[i+5] = uint8(c1.B >> 8)
p.XPix[i+4] = uint8(c1.B)
} else {
p.XPix[i+0] = uint8(c1.R >> 8)
p.XPix[i+1] = uint8(c1.R)
p.XPix[i+2] = uint8(c1.G >> 8)
p.XPix[i+3] = uint8(c1.G)
p.XPix[i+4] = uint8(c1.B >> 8)
p.XPix[i+5] = uint8(c1.B)
}
return
}
func (p *RGB48Image) SetRGB48(x, y int, c [3]uint16) {
if !(image.Point{x, y}.In(p.XRect)) {
return
}
i := p.PixOffset(x, y)
if isLittleEndian {
p.XPix[i+1] = uint8(c[0] >> 8)
p.XPix[i+0] = uint8(c[0])
p.XPix[i+3] = uint8(c[1] >> 8)
p.XPix[i+2] = uint8(c[1])
p.XPix[i+5] = uint8(c[2] >> 8)
p.XPix[i+4] = uint8(c[2])
} else {
p.XPix[i+0] = uint8(c[0] >> 8)
p.XPix[i+1] = uint8(c[0])
p.XPix[i+2] = uint8(c[1] >> 8)
p.XPix[i+3] = uint8(c[1])
p.XPix[i+4] = uint8(c[2] >> 8)
p.XPix[i+5] = uint8(c[2])
}
return
}
// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *RGB48Image) SubImage(r image.Rectangle) image.Image {
r = r.Intersect(p.XRect)
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
// either r1 or r2 if the intersection is empty. Without explicitly checking for
// this, the XPix[i:] expression below can panic.
if r.Empty() {
return &RGB48Image{}
}
i := p.PixOffset(r.Min.X, r.Min.Y)
return &RGB48Image{
XPix: p.XPix[i:],
XStride: p.XStride,
XRect: r,
}
}
// Opaque scans the entire image and reports whether it is fully opaque.
func (p *RGB48Image) Opaque() bool {
return true
}
// NewRGB48Image returns a new RGB48Image with the given bounds.
func NewRGB48Image(r image.Rectangle) *RGB48Image {
w, h := r.Dx(), r.Dy()
pix := make([]uint8, 6*w*h)
return &RGB48Image{
XPix: pix,
XStride: 6 * w,
XRect: r,
}
}
func NewRGB48ImageFrom(m image.Image) *RGB48Image {
if m, ok := m.(*RGB48Image); ok {
return m
}
// convert to RGB48Image
b := m.Bounds()
rgb := NewRGB48Image(b)
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
pr, pg, pb, _ := m.At(x, y).RGBA()
rgb.SetRGB48(x, y, [3]uint16{
uint16(pr),
uint16(pg),
uint16(pb),
})
}
}
return rgb
}