forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_dataset_meta.py
35 lines (32 loc) · 1.01 KB
/
gen_dataset_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pickle
import numpy as np
import os
import os.path as osp
import glob
import argparse
import cv2
import time
import datetime
import pickle
import sklearn
import mxnet as mx
from utils.utils_config import get_config
from dataset import MXFaceDataset, Rt26dof
if __name__ == "__main__":
cfg = get_config('configs/s1.py')
cfg.task = 0
save_path = os.path.join(cfg.cache_dir, 'train.meta')
assert not osp.exists(save_path)
dataset = MXFaceDataset(cfg, is_train=True, norm_6dof=False, degrees_6dof=True, local_rank=0)
#dataset.transform = None
print('total:', len(dataset))
total = len(dataset)
meta = np.zeros( (total, 3), dtype=np.float32 )
for idx in range(total):
#image, label_verts, label_6dof = dataset[idx]
#img_raw, img_local, label_verts, label_Rt, tform = dataset[idx]
img, label_verts, label_6dof, label_points2d, _, _ = dataset[idx]
pose = label_6dof.numpy()[:3]
print(idx, pose)
meta[idx] = pose
np.save(save_path, meta)