forked from renmengye/resnet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_imagenet_exp_sched.py
executable file
·106 lines (94 loc) · 3.6 KB
/
run_imagenet_exp_sched.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python
"""
Launches ImageNet experiment for a limited number of steps, periodically.
Author: Mengye Ren ([email protected])
Usage:
./run_imagenet_exp_sched.py --id [EXPERIMENT ID] \
--logs [LOGS FOLDER] \
--results [SAVE FOLDER] \
--max_num_steps [MAX NUMBER OF STEPS] \
--max_max_steps [TOTAL NUMBER OF STEPS] \
--model [MODEL NAME]
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import os
import sys
import tensorflow as tf
import time
import traceback
from pysched.slurm import SlurmCommandDispatcherFactory
from pysched.local import LocalCommandDispatcherFactory
from resnet.utils import gen_id, logger
log = logger.get()
flags = tf.flags
flags.DEFINE_string("id", None, "Experiment ID")
flags.DEFINE_string("results", "./results/imagenet", "Saving folder")
flags.DEFINE_string("logs", "./logs/public", "Logging folder")
flags.DEFINE_bool("local", False, "Whether run locally or on slurm")
flags.DEFINE_integer("max_num_steps", 30000, "Maximum number of steps")
flags.DEFINE_integer("max_max_steps", 600000,
"Maximum number of training steps")
flags.DEFINE_integer("num_pass", 1, "Number of forward-backwad passes")
flags.DEFINE_integer("min_interval", 7200, "Minimum number of seconds")
flags.DEFINE_string("model", "resnet-50", "Model name")
flags.DEFINE_string("machine", None, "Preferred machine")
FLAGS = flags.FLAGS
DATASET = "imagenet"
# Get dispatcher factory.
if FLAGS.local:
dispatch_factory = LocalCommandDispatcherFactory()
else:
dispatch_factory = SlurmCommandDispatcherFactory()
# Generate experiment ID.
if FLAGS.id is None:
exp_id = gen_id("exp_" + DATASET + "_" + FLAGS.model)
restore = False
# raise Exception("You need to specify model ID.")
else:
exp_id = FLAGS.id
restore = True
save_folder = os.path.realpath(
os.path.abspath(os.path.join(FLAGS.results, exp_id)))
while True:
# Check if we need to launch another job.
if os.path.exists(save_folder):
latest_ckpt = tf.train.latest_checkpoint(save_folder)
cur_steps = int(latest_ckpt.split("-")[-1])
else:
cur_steps = 0
if cur_steps >= FLAGS.max_max_steps:
log.info("Maximum steps {} reached.".format(FLAGS.max_max_steps))
break
# Use slurm to launch job.
try:
start_time = time.time()
log.info("Training model \"{}\"".format(exp_id))
dispatcher = dispatch_factory.create(
num_gpu=4, num_cpu=12, machine=FLAGS.machine)
arg_list = [
"./run_imagenet_exp.py", "--id", exp_id, "--results", FLAGS.results,
"--logs", FLAGS.logs, "--max_num_steps", str(FLAGS.max_num_steps),
"--model", FLAGS.model, "--num_pass", str(FLAGS.num_pass), "--verbose",
"--num_gpu", "4"
]
if restore:
arg_list.append("--restore")
job = dispatcher.dispatch(arg_list)
code = job.wait()
if code != 0:
log.error("Job failed")
except Exception as e:
log.error("An exception occurred.")
log.error(e)
exc_type, exc_value, exc_traceback = sys.exc_info()
log.error("*** print_tb:")
traceback.print_tb(exc_traceback, limit=10, file=sys.stdout)
log.error("*** print_exception:")
traceback.print_exception(
exc_type, exc_value, exc_traceback, limit=10, file=sys.stdout)
# Wait for the next job.
end_time = time.time()
elapsed = end_time - start_time
if elapsed < FLAGS.min_interval:
time.sleep(FLAGS.min_interval - elapsed)