forked from haonan-li/CMMLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qwen.py
101 lines (84 loc) · 4.17 KB
/
qwen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import torch
import numpy as np
import argparse
from mp_utils import choices, format_example, gen_prompt, softmax, run_eval
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
def eval(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot):
choice_ids = [tokenizer(choice)['input_ids'][0] for choice in choices]
cors = []
all_conf = []
all_preds = []
answers = choices[: test_df.shape[1] - 2]
for i in range(test_df.shape[0]):
prompt_end = format_example(test_df, i, subject, include_answer=False, cot=cot)
prompt = gen_prompt(dev_df=dev_df,
subject=subject,
prompt_end=prompt_end,
num_few_shot=num_few_shot,
tokenizer=tokenizer,
max_length=max_length,
cot=cot)
label = test_df.iloc[i, test_df.shape[1] - 1]
with torch.no_grad():
input_ids = tokenizer([prompt], padding=False)['input_ids']
input_ids = torch.tensor(input_ids, device=model.device)
logits = model(input_ids)['logits']
last_token_logits = logits[:, -1, :]
if last_token_logits.dtype in {torch.bfloat16, torch.float16}:
last_token_logits = last_token_logits.to(dtype=torch.float32)
choice_logits = last_token_logits[:, choice_ids].detach().cpu().numpy()
conf = softmax(choice_logits[0])[choices.index(label)]
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(choice_logits[0])]
all_preds += pred
all_conf.append(conf)
cors.append(pred == label)
acc = np.mean(cors)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return acc, all_preds, None
def eval_chat(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot):
cors = []
all_preds = []
answers = choices[: test_df.shape[1] - 2]
for i in range(test_df.shape[0]):
prompt_end = format_example(test_df, i, subject, include_answer=False, cot=cot)
prompt = gen_prompt(dev_df=dev_df,
subject=subject,
prompt_end=prompt_end,
num_few_shot=num_few_shot,
tokenizer=tokenizer,
max_length=max_length,
cot=cot)
label = test_df.iloc[i, test_df.shape[1] - 1]
pred, history = model.chat(tokenizer, prompt, history=None)
if pred and pred[0] in choices:
cors.append(pred[0] == label)
all_preds.append(pred.replace("\n", ""))
acc = np.mean(cors)
print("Average accuracy {:.3f} - {}".format(acc, subject))
print("{} results, {} inappropriate formated answers.".format(len(cors), len(all_preds)-len(cors)))
return acc, all_preds, None
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, default="")
parser.add_argument("--lora_weights", type=str, default="")
parser.add_argument("--data_dir", type=str, default="../data")
parser.add_argument("--save_dir", type=str, default="../results/Qwen-7B-Chat")
parser.add_argument("--num_few_shot", type=int, default=0)
parser.add_argument("--max_length", type=int, default=2048)
parser.add_argument("--load_in_8bit", action='store_true')
parser.add_argument("--cot", action='store_true')
args = parser.parse_args()
# Initialize models
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
trust_remote_code=True,
device_map="auto"
)
model.generation_config = GenerationConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True)
if "chat" in args.model_name_or_path.lower():
run_eval(model, tokenizer, eval_chat, args)
else:
run_eval(model, tokenizer, eval, args)