forked from eldar/pose-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
140 lines (98 loc) · 4.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import logging
import threading
import tensorflow as tf
import tensorflow.contrib.slim as slim
from config import load_config
from dataset.factory import create as create_dataset
from nnet.net_factory import pose_net
from nnet.pose_net import get_batch_spec
from util.logging import setup_logging
class LearningRate(object):
def __init__(self, cfg):
self.steps = cfg.multi_step
self.current_step = 0
def get_lr(self, iteration):
lr = self.steps[self.current_step][0]
if iteration == self.steps[self.current_step][1]:
self.current_step += 1
return lr
def setup_preloading(batch_spec):
placeholders = {name: tf.placeholder(tf.float32, shape=spec) for (name, spec) in batch_spec.items()}
names = placeholders.keys()
placeholders_list = list(placeholders.values())
QUEUE_SIZE = 20
q = tf.FIFOQueue(QUEUE_SIZE, [tf.float32]*len(batch_spec))
enqueue_op = q.enqueue(placeholders_list)
batch_list = q.dequeue()
batch = {}
for idx, name in enumerate(names):
batch[name] = batch_list[idx]
batch[name].set_shape(batch_spec[name])
return batch, enqueue_op, placeholders
def load_and_enqueue(sess, enqueue_op, coord, dataset, placeholders):
while not coord.should_stop():
batch_np = dataset.next_batch()
food = {pl: batch_np[name] for (name, pl) in placeholders.items()}
sess.run(enqueue_op, feed_dict=food)
def start_preloading(sess, enqueue_op, dataset, placeholders):
coord = tf.train.Coordinator()
t = threading.Thread(target=load_and_enqueue,
args=(sess, enqueue_op, coord, dataset, placeholders))
t.start()
return coord, t
def get_optimizer(loss_op, cfg):
learning_rate = tf.placeholder(tf.float32, shape=[])
if cfg.optimizer == "sgd":
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
elif cfg.optimizer == "adam":
optimizer = tf.train.AdamOptimizer(cfg.adam_lr)
else:
raise ValueError('unknown optimizer {}'.format(cfg.optimizer))
train_op = slim.learning.create_train_op(loss_op, optimizer)
return learning_rate, train_op
def train():
setup_logging()
cfg = load_config()
dataset = create_dataset(cfg)
batch_spec = get_batch_spec(cfg)
batch, enqueue_op, placeholders = setup_preloading(batch_spec)
losses = pose_net(cfg).train(batch)
total_loss = losses['total_loss']
for k, t in losses.items():
tf.summary.scalar(k, t)
merged_summaries = tf.summary.merge_all()
variables_to_restore = slim.get_variables_to_restore(include=["resnet_v1"])
restorer = tf.train.Saver(variables_to_restore)
saver = tf.train.Saver(max_to_keep=5)
sess = tf.Session()
coord, thread = start_preloading(sess, enqueue_op, dataset, placeholders)
train_writer = tf.summary.FileWriter(cfg.log_dir, sess.graph)
learning_rate, train_op = get_optimizer(total_loss, cfg)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Restore variables from disk.
restorer.restore(sess, cfg.init_weights)
max_iter = int(cfg.multi_step[-1][1])
display_iters = cfg.display_iters
cum_loss = 0.0
lr_gen = LearningRate(cfg)
for it in range(max_iter+1):
current_lr = lr_gen.get_lr(it)
[_, loss_val, summary] = sess.run([train_op, total_loss, merged_summaries],
feed_dict={learning_rate: current_lr})
cum_loss += loss_val
train_writer.add_summary(summary, it)
if it % display_iters == 0:
average_loss = cum_loss / display_iters
cum_loss = 0.0
logging.info("iteration: {} loss: {} lr: {}"
.format(it, "{0:.4f}".format(average_loss), current_lr))
# Save snapshot
if (it % cfg.save_iters == 0 and it != 0) or it == max_iter:
model_name = cfg.snapshot_prefix
saver.save(sess, model_name, global_step=it)
sess.close()
coord.request_stop()
coord.join([thread])
if __name__ == '__main__':
train()