-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
52 lines (36 loc) · 1.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import random
import logging
import torch
import numpy as np
from sklearn.metrics import f1_score
from transformers.tokenization_bert import BertTokenizer
ADDITIONAL_SPECIAL_TOKENS = ["<e1>", "</e1>", "<e2>", "</e2>"]
def get_label(args):
return [label.strip() for label in open(os.path.join(args.data_dir, args.label_file), 'r', encoding='utf-8')]
def load_tokenizer(args):
tokenizer = BertTokenizer.from_pretrained(args.pretrained_model_name)
tokenizer.add_special_tokens({"additional_special_tokens": ADDITIONAL_SPECIAL_TOKENS})
return tokenizer
def init_logger():
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def compute_metrics(preds, labels):
assert len(preds) == len(labels)
return acc_and_f1(preds, labels)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels, average='micro'):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds, labels=[1, 2, 3, 4], average=average)
return {
"acc": acc,
"f1": f1,
}