forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProcessGroupNCCLErrorsTest.cpp
259 lines (213 loc) · 7.08 KB
/
ProcessGroupNCCLErrorsTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include <chrono>
#include <c10/util/irange.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/distributed/c10d/FileStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include "CUDATest.hpp"
#include "TestUtils.hpp"
#include <gtest/gtest.h>
using namespace c10d::test;
constexpr int kNcclErrorHandlingVersion = 2400;
class WorkNCCLSimulateErrors : public c10d::ProcessGroupNCCL::WorkNCCL {
public:
WorkNCCLSimulateErrors(
const std::vector<at::Device>& devices,
bool simulate_error,
int rank,
c10d::OpType opType,
uint64_t seq)
: WorkNCCL(devices, rank, opType, seq), simulate_error_(simulate_error) {}
std::exception_ptr checkForNCCLErrors(
const std::vector<std::shared_ptr<c10d::NCCLComm>>& ncclComms)
const override {
if (simulate_error_) {
return std::make_exception_ptr(std::runtime_error("Error"));
}
return c10d::ProcessGroupNCCL::WorkNCCL::checkForNCCLErrors(ncclComms);
}
private:
bool simulate_error_;
};
class ProcessGroupNCCLSimulateErrors : public c10d::ProcessGroupNCCL {
public:
ProcessGroupNCCLSimulateErrors(
const c10::intrusive_ptr<c10d::Store>& store,
int rank,
int size,
c10::intrusive_ptr<c10d::ProcessGroupNCCL::Options> opts)
: ProcessGroupNCCL(store, rank, size, opts), simulate_error_(false) {}
std::exception_ptr checkForNCCLErrors(
const std::vector<std::shared_ptr<c10d::NCCLComm>>& ncclComms) override {
if (simulate_error_) {
return std::make_exception_ptr(std::runtime_error("Error"));
}
return c10d::ProcessGroupNCCL::checkForNCCLErrors(ncclComms);
}
std::chrono::duration<int64_t, std::milli> getWatchdogSleepInterval() {
return std::chrono::milliseconds(
ProcessGroupNCCLSimulateErrors::kWatchdogThreadSleepMillis);
}
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> initWork(
std::vector<at::Device> devices,
int rank,
c10d::OpType opType,
const char* profilingTitle,
const c10::optional<std::vector<at::Tensor>>& inputs =
c10::nullopt) override {
return c10::make_intrusive<WorkNCCLSimulateErrors>(
devices, simulate_error_, rank, opType, seq_);
}
size_t getNCCLCommCacheSize() {
return devNCCLCommMap_.size();
}
void simulate_error() {
simulate_error_ = true;
}
void reset_error() {
simulate_error_ = false;
}
private:
bool simulate_error_;
};
class WorkNCCLTimedoutErrors : public c10d::ProcessGroupNCCL::WorkNCCL {
public:
WorkNCCLTimedoutErrors(
const std::vector<at::Device>& devices,
bool set_timedout_error,
int rank,
c10d::OpType opType,
uint64_t seq)
: WorkNCCL(devices, rank, opType, seq),
set_timedout_error_(set_timedout_error) {}
private:
bool isCompleted() override {
if (set_timedout_error_) {
return false;
}
return c10d::ProcessGroupNCCL::WorkNCCL::isCompleted();
}
private:
bool set_timedout_error_;
};
class ProcessGroupNCCLTimedOutErrors : public ProcessGroupNCCLSimulateErrors {
public:
ProcessGroupNCCLTimedOutErrors(
const c10::intrusive_ptr<c10d::Store>& store,
int rank,
int size,
c10::intrusive_ptr<c10d::ProcessGroupNCCL::Options> opts)
: ProcessGroupNCCLSimulateErrors(store, rank, size, opts),
set_timedout_error_(false) {}
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> initWork(
std::vector<at::Device> devices,
int rank,
c10d::OpType opType,
const char* profilingTitle,
const c10::optional<std::vector<at::Tensor>>& inputs =
c10::nullopt) override {
return c10::make_intrusive<WorkNCCLTimedoutErrors>(
devices, set_timedout_error_, rank, opType, seq_);
}
void set_timedout_error() {
set_timedout_error_ = true;
}
void reset_timedout_error() {
set_timedout_error_ = false;
}
private:
bool set_timedout_error_;
};
class ProcessGroupNCCLErrorsTest : public ::testing::Test {
protected:
bool skipTest() {
if (cudaNumDevices() == 0) {
LOG(INFO) << "Skipping test since CUDA is not available";
return true;
}
#ifdef USE_C10D_NCCL
if (torch::cuda::nccl::version() < kNcclErrorHandlingVersion) {
LOG(INFO) << "Skipping test since NCCL version is too old";
return true;
}
#endif
return false;
}
void SetUp() override {
size_t numDevices = cudaNumDevices();
TemporaryFile file;
store_ = c10::make_intrusive<::c10d::FileStore>(file.path, 1);
at::cuda::OptionalCUDAGuard deviceGuard;
tensors_.resize(numDevices);
for (const auto i : c10::irange(numDevices)) {
deviceGuard.set_index(i);
tensors_[i] = at::ones({3, 3}, at::kCUDA);
}
}
void TearDown() override {
ASSERT_TRUE(setenv(c10d::NCCL_BLOCKING_WAIT, "0", 1) == 0);
}
std::vector<at::Tensor> tensors_;
c10::intrusive_ptr<::c10d::FileStore> store_;
};
TEST_F(ProcessGroupNCCLErrorsTest, testNCCLErrorsBlocking) {
if (skipTest()) {
return;
}
ASSERT_TRUE(setenv(c10d::NCCL_BLOCKING_WAIT, "1", 1) == 0);
auto options = c10d::ProcessGroupNCCL::Options::create();
options->timeout = std::chrono::milliseconds(1000);
ProcessGroupNCCLSimulateErrors pg(store_, 0, 1, options);
auto work = pg.allreduce(tensors_);
work->wait();
EXPECT_TRUE(work->isSuccess());
EXPECT_EQ(1, pg.getNCCLCommCacheSize());
// Now run all reduce with errors.
pg.simulate_error();
work = pg.allreduce(tensors_);
EXPECT_THROW(work->wait(), std::runtime_error);
// Verify the work item failed.
EXPECT_TRUE(work->isCompleted());
EXPECT_FALSE(work->isSuccess());
EXPECT_THROW(work->wait(), std::runtime_error);
// Communicators might be aborted here, further operations would fail.
}
TEST_F(ProcessGroupNCCLErrorsTest, testNCCLTimedoutErrorsBlocking) {
if (skipTest()) {
return;
}
ASSERT_TRUE(setenv(c10d::NCCL_BLOCKING_WAIT, "1", 1) == 0);
auto options = c10d::ProcessGroupNCCL::Options::create();
options->timeout = std::chrono::milliseconds(3000);
ProcessGroupNCCLTimedOutErrors pg(store_, 0, 1, options);
auto work = pg.allreduce(tensors_);
work->wait();
EXPECT_TRUE(work->isSuccess());
EXPECT_EQ(1, pg.getNCCLCommCacheSize());
// Now run all reduce with errors.
pg.set_timedout_error();
work = pg.allreduce(tensors_);
EXPECT_THROW(work->wait(), c10::Error);
// Communicators might be aborted here, further operations would fail.
}
TEST_F(ProcessGroupNCCLErrorsTest, testNCCLErrorsNonBlocking) {
if (skipTest()) {
return;
}
auto options = c10d::ProcessGroupNCCL::Options::create();
options->timeout = std::chrono::milliseconds(3000);
ProcessGroupNCCLSimulateErrors pg(store_, 0, 1, options);
auto work = pg.allreduce(tensors_);
pg.barrier()->wait();
EXPECT_TRUE(work->isSuccess());
EXPECT_EQ(1, pg.getNCCLCommCacheSize());
// Now run all reduce with errors.
pg.simulate_error();
work = pg.allreduce(tensors_);
// Should not throw exceptions.
work->wait();
pg.barrier()->wait();
// Verify the work item failed.
EXPECT_TRUE(work->isCompleted());
EXPECT_FALSE(work->isSuccess());
// Communicators might be aborted here, further operations would fail.
}