forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jit.cpp
126 lines (102 loc) · 3.8 KB
/
jit.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#include <gtest/gtest.h>
#include <torch/jit.h>
#include <torch/script.h>
#include <torch/types.h>
#include <string>
TEST(TorchScriptTest, CanCompileMultipleFunctions) {
auto module = torch::jit::compile(R"JIT(
def test_mul(a, b):
return a * b
def test_relu(a, b):
return torch.relu(a + b)
def test_while(a, i):
while bool(i < 10):
a += a
i += 1
return a
def test_len(a : List[int]):
return len(a)
)JIT");
auto a = torch::ones(1);
auto b = torch::ones(1);
ASSERT_EQ(1, module->run_method("test_mul", a, b).toTensor().item<int64_t>());
ASSERT_EQ(
2, module->run_method("test_relu", a, b).toTensor().item<int64_t>());
ASSERT_TRUE(
0x200 ==
module->run_method("test_while", a, b).toTensor().item<int64_t>());
at::IValue list = c10::List<int64_t>({3, 4});
ASSERT_EQ(2, module->run_method("test_len", list).toInt());
}
TEST(TorchScriptTest, TestNestedIValueModuleArgMatching) {
auto module = torch::jit::compile(R"JIT(
def nested_loop(a: List[List[Tensor]], b: int):
return torch.tensor(1.0) + b
)JIT");
auto b = 3;
torch::List<torch::Tensor> list({torch::rand({4, 4})});
torch::List<torch::List<torch::Tensor>> list_of_lists;
list_of_lists.push_back(list);
module->run_method("nested_loop", list_of_lists, b);
auto generic_list = c10::impl::GenericList(at::TensorType::get());
auto empty_generic_list =
c10::impl::GenericList(at::ListType::create(at::TensorType::get()));
empty_generic_list.push_back(generic_list);
module->run_method("nested_loop", empty_generic_list, b);
auto too_many_lists = c10::impl::GenericList(
at::ListType::create(at::ListType::create(at::TensorType::get())));
too_many_lists.push_back(empty_generic_list);
try {
module->run_method("nested_loop", too_many_lists, b);
AT_ASSERT(false);
} catch (const c10::Error& error) {
AT_ASSERT(
std::string(error.what_without_backtrace())
.find("nested_loop() Expected a value of type 'List[List[Tensor]]'"
" for argument 'a' but instead found type "
"'List[List[List[Tensor]]]'") == 0);
};
}
TEST(TorchScriptTest, TestDictArgMatching) {
auto module = torch::jit::compile(R"JIT(
def dict_op(a: Dict[str, Tensor], b: str):
return a[b]
)JIT");
c10::Dict<std::string, at::Tensor> dict;
dict.insert("hello", torch::ones({2}));
auto output = module->run_method("dict_op", dict, std::string("hello"));
ASSERT_EQ(1, output.toTensor()[0].item<int64_t>());
}
TEST(TorchScriptTest, TestTupleArgMatching) {
auto module = torch::jit::compile(R"JIT(
def tuple_op(a: Tuple[List[int]]):
return a
)JIT");
c10::List<int64_t> int_list({1});
auto tuple_generic_list = c10::ivalue::Tuple::create({int_list});
// doesn't fail on arg matching
module->run_method("tuple_op", tuple_generic_list);
}
TEST(TorchScriptTest, TestOptionalArgMatching) {
auto module = torch::jit::compile(R"JIT(
def optional_tuple_op(a: Optional[Tuple[int, str]]):
if a is None:
return 0
else:
return a[0]
)JIT");
auto optional_tuple = c10::ivalue::Tuple::create({2, std::string("hi")});
ASSERT_EQ(2, module->run_method("optional_tuple_op", optional_tuple).toInt());
ASSERT_EQ(
0, module->run_method("optional_tuple_op", torch::jit::IValue()).toInt());
}
TEST(TorchScriptTest, TestPickle) {
torch::IValue float_value(2.3);
// TODO: when tensors are stored in the pickle, delete this
std::vector<at::Tensor> tensor_table;
auto data = torch::jit::pickle(float_value, &tensor_table);
torch::IValue ivalue = torch::jit::unpickle(data.data(), data.size());
double diff = ivalue.toDouble() - float_value.toDouble();
double eps = 0.0001;
ASSERT_TRUE(diff < eps && diff > -eps);
}