forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DispatchStub.h
301 lines (262 loc) · 8.95 KB
/
DispatchStub.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#pragma once
#include <c10/core/DeviceType.h>
#include <c10/macros/Export.h>
#include <atomic>
#include <utility>
// Implements instruction set specific function dispatch.
//
// Kernels that may make use of specialized instruction sets (e.g. AVX2) are
// compiled multiple times with different compiler flags (e.g. -mavx2). A
// DispatchStub contains a table of function pointers for a kernel. At runtime,
// the fastest available kernel is chosen based on the features reported by
// cpuinfo.
//
// Example:
//
// In native/MyKernel.h:
// using fn_type = void(*)(const Tensor& x);
// DECLARE_DISPATCH(fn_type, stub);
//
// In native/MyKernel.cpp
// DEFINE_DISPATCH(stub);
//
// In native/cpu/MyKernel.cpp:
// namespace {
// // use anonymous namespace so that different cpu versions won't conflict
// void kernel(const Tensor& x) { ... }
// }
// REGISTER_DISPATCH(stub, &kernel);
//
// To call:
// stub(kCPU, tensor);
//
// TODO: CPU instruction set selection should be folded into whatever
// the main dispatch mechanism is.
// ignore warnings about DispatchStub::DEFAULT, AVX, AVX2 defined elsewhere
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wundefined-var-template"
#endif
namespace at { namespace native {
enum class CPUCapability {
DEFAULT = 0,
#if defined(HAVE_VSX_CPU_DEFINITION)
VSX = 1,
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
ZVECTOR = 1,
#else
AVX2 = 1,
AVX512 = 2,
#endif
NUM_OPTIONS
};
CPUCapability get_cpu_capability();
template <typename FnPtr, typename T>
struct DispatchStub;
/**
* The sole purpose of this class is to outline methods that don't need to be
* specialized or otherwise inlined and duplicated (by the compiler due to
* template expansion), since it causes size bloat if there are a significant
* number of specialization of the DispatchStub<> class.
*/
struct TORCH_API DispatchStubImpl {
void* get_call_ptr(
DeviceType device_type
, void *DEFAULT
#ifdef HAVE_AVX512_CPU_DEFINITION
, void *AVX512
#endif
#ifdef HAVE_AVX2_CPU_DEFINITION
, void *AVX2
#endif
#ifdef HAVE_VSX_CPU_DEFINITION
, void *VSX
#endif
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
, void *ZVECTOR
#endif
);
/**
* The CPU Dispatch actual method is chosen in decreasing order of preference by
* DispatchStubImpl::choose_cpu_impl() in case none is found by
* DispatchStubImpl::get_call_ptr() in cpu_dispatch_ptr.
*/
void* choose_cpu_impl(
void *DEFAULT
#ifdef HAVE_AVX512_CPU_DEFINITION
, void *AVX512
#endif
#ifdef HAVE_AVX2_CPU_DEFINITION
, void *AVX2
#endif
#ifdef HAVE_VSX_CPU_DEFINITION
, void *VSX
#endif
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
, void *ZVECTOR
#endif
);
// Fixing dispatch error in Windows debug builds.
// See https://github.com/pytorch/pytorch/issues/22681 for more details.
#if defined(_MSC_VER) && defined(_DEBUG)
std::atomic<void*> cpu_dispatch_ptr;
void* cuda_dispatch_ptr;
void* hip_dispatch_ptr;
void* mps_dispatch_ptr;
#else
std::atomic<void*> cpu_dispatch_ptr{nullptr};
void* cuda_dispatch_ptr = nullptr;
void* hip_dispatch_ptr = nullptr;
void* mps_dispatch_ptr = nullptr;
#endif
};
template <typename rT, typename T, typename... Args>
struct DispatchStub<rT (*)(Args...), T> {
using FnPtr = rT (*) (Args...);
DispatchStub() = default;
DispatchStub(const DispatchStub&) = delete;
DispatchStub& operator=(const DispatchStub&) = delete;
private:
FnPtr get_call_ptr(DeviceType device_type) {
return reinterpret_cast<FnPtr>(
impl.get_call_ptr(device_type
, reinterpret_cast<void*>(DEFAULT)
#ifdef HAVE_AVX512_CPU_DEFINITION
, reinterpret_cast<void*>(AVX512)
#endif
#ifdef HAVE_AVX2_CPU_DEFINITION
, reinterpret_cast<void*>(AVX2)
#endif
#ifdef HAVE_VSX_CPU_DEFINITION
, reinterpret_cast<void*>(VSX)
#endif
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
, reinterpret_cast<void*>(ZVECTOR)
#endif
)
);
}
public:
template <typename... ArgTypes>
rT operator()(DeviceType device_type, ArgTypes&&... args) {
FnPtr call_ptr = get_call_ptr(device_type);
return (*call_ptr)(std::forward<ArgTypes>(args)...);
}
void set_cuda_dispatch_ptr(FnPtr fn_ptr) {
impl.cuda_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
}
void set_hip_dispatch_ptr(FnPtr fn_ptr) {
impl.hip_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
}
void set_mps_dispatch_ptr(FnPtr fn_ptr) {
impl.mps_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
}
static TORCH_API FnPtr DEFAULT;
#ifdef HAVE_AVX512_CPU_DEFINITION
static TORCH_API FnPtr AVX512;
#endif
#ifdef HAVE_AVX2_CPU_DEFINITION
static TORCH_API FnPtr AVX2;
#endif
#ifdef HAVE_VSX_CPU_DEFINITION
static TORCH_API FnPtr VSX;
#endif
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
static TORCH_API FnPtr ZVECTOR;
#endif
private:
DispatchStubImpl impl;
};
namespace {
template <typename DispatchStub>
struct RegisterCUDADispatch {
RegisterCUDADispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
stub.set_cuda_dispatch_ptr(value);
}
};
template <typename DispatchStub>
struct RegisterMPSDispatch {
RegisterMPSDispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
stub.set_mps_dispatch_ptr(value);
}
};
template <typename DispatchStub>
struct RegisterHIPDispatch {
RegisterHIPDispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
// TODO: make this point at hip_dispatch_ptr
stub.set_cuda_dispatch_ptr(value);
}
};
} // anonymous namespace
// Compiler will complain if you put things like std::tuple<Tensor, Tensor> in
// the `fn` argument of DECLARE_DISPATCH. Some possible workarounds, e.g.,
// adding parentheses and using helper struct to get rid of the parentheses, do
// not work with MSVC. So do a `using`-declaration if you need to pass in such
// `fn`, e.g., grid_sampler_2d_backward_cpu_kernel in GridSampleKernel.h.
#define DECLARE_DISPATCH(fn, name) \
struct name : DispatchStub<fn, name> { \
name() = default; \
name(const name&) = delete; \
name& operator=(const name&) = delete; \
}; \
extern TORCH_API struct name name
#define DEFINE_DISPATCH(name) struct name name
#define REGISTER_ARCH_DISPATCH(name, arch, fn) \
template <> name::FnPtr TORCH_API DispatchStub<name::FnPtr, struct name>::arch = fn;
#ifdef HAVE_AVX512_CPU_DEFINITION
#define REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, AVX512, fn)
#else
#define REGISTER_AVX512_DISPATCH(name, fn)
#endif
#ifdef HAVE_AVX2_CPU_DEFINITION
#define REGISTER_AVX2_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, AVX2, fn)
#else
#define REGISTER_AVX2_DISPATCH(name, fn)
#endif
#ifdef HAVE_VSX_CPU_DEFINITION
#define REGISTER_VSX_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, VSX, fn)
#else
#define REGISTER_VSX_DISPATCH(name, fn)
#endif
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
#define REGISTER_ZVECTOR_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, ZVECTOR, fn)
#else
#define REGISTER_ZVECTOR_DISPATCH(name, fn)
#endif
// Macro to register the same kernel for all CPU arch types. This is useful
// if a kernel does not benefit from being recompiled across different arch types.
#define REGISTER_ALL_CPU_DISPATCH(name, fn) \
REGISTER_ARCH_DISPATCH(name, DEFAULT, fn) \
REGISTER_AVX512_DISPATCH(name, fn) \
REGISTER_AVX2_DISPATCH(name, fn) \
REGISTER_VSX_DISPATCH(name, fn) \
REGISTER_ZVECTOR_DISPATCH(name, fn)
#define REGISTER_NO_CPU_DISPATCH(name) \
REGISTER_ALL_CPU_DISPATCH(name, nullptr)
#define REGISTER_CUDA_DISPATCH(name, fn) \
static RegisterCUDADispatch<struct name> name ## __register(name, fn);
#define REGISTER_HIP_DISPATCH(name, fn) \
static RegisterHIPDispatch<struct name> name ## __register(name, fn);
#define REGISTER_MPS_DISPATCH(name, fn) \
static RegisterMPSDispatch<struct name> name ## __register(name, fn);
// NB: This macro must be used in an actual 'cu' file; if you try using
// it from a 'cpp' file it will not work!
#if defined(__CUDACC__)
#define REGISTER_DISPATCH(name, fn) REGISTER_CUDA_DISPATCH(name, fn)
#elif defined(__HIPCC__)
// TODO: cut this over to HIP dispatch once we stop pretending that CUDA
// is HIP in the PyTorch HIPify build.
#define REGISTER_DISPATCH(name, fn) REGISTER_CUDA_DISPATCH(name, fn)
// #define REGISTER_DISPATCH(name, fn) REGISTER_HIP_DISPATCH(name, fn)
#elif defined(__OBJC__) && defined(USE_MPS)
// NB: this macro must be used from a 'mm' file in order to dispatch a MPS kernel
#define REGISTER_DISPATCH(name, fn) REGISTER_MPS_DISPATCH(name, fn)
#elif defined(CPU_CAPABILITY)
#define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
#define REGISTER_NO_AVX512_DISPATCH(name) \
REGISTER_AVX512_DISPATCH(name, nullptr)
#endif
}} // namespace at::native
#if defined(__clang__)
#pragma clang diagnostic pop
#endif