forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPooling.cpp
237 lines (209 loc) · 6.28 KB
/
Pooling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/utils/ParamUtils.h>
#include <tuple>
#if !AT_MKLDNN_ENABLED()
namespace at {
namespace native {
Tensor mkldnn_max_pool2d(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {
AT_ERROR(
"mkldnn_max_pool2d: ATen not compiled with MKLDNN support");
}
Tensor mkldnn_avg_pool2d(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override) {
AT_ERROR("mkldnn_avg_pool2d: ATen not compiled with MKLDNN support");
}
Tensor& mkldnn_avg_pool2d_out(
Tensor& output,
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override) {
AT_ERROR("mkldnn_avg_pool2d_out: ATen not compiled with MKLDNN support");
}
Tensor mkldnn_adaptive_avg_pool2d(Tensor const& input, IntArrayRef output_size) {
AT_ERROR("mkldnn_adaptive_avg_pool2d: ATen not compiled with MKLDNN support");
}
Tensor& mkldnn_adaptive_avg_pool2d_out(
Tensor& output,
const Tensor& input,
IntArrayRef output_size) {
AT_ERROR(
"mkldnn_adaptive_avg_pool2d_out: ATen not compiled with MKLDNN support");
}
} // namespace native
} // namespace at
#else // AT_MKLDNN_ENABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
namespace at {
namespace native {
static Tensor _mkldnn_pool2d(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
ideep::algorithm algo) {
auto kernel_size_vec = expand_param_if_needed(kernel_size, "kernel_size", 2);
auto stride_vec = expand_param_if_needed(stride, "stride", 2);
auto padding_vec = expand_param_if_needed(padding, "padding", 2);
auto padding_vec_l = padding_vec;
auto padding_vec_r = padding_vec;
auto dilation_vec = expand_param_if_needed(dilation, "dilation", 2);
const ideep::tensor& x = itensor_from_mkldnn(input);
std::vector<int64_t> output_sizes;
if (ceil_mode) {
// MKLDNN does not support ceil mode, so we adjust padding
// on the right side to match behavior. Adjust output size
// accordingly.
const std::vector<int64_t> output_sizes_ceil = pool_output_sizes(
input.sizes(),
kernel_size_vec,
stride_vec,
padding_vec_l,
padding_vec_r,
dilation_vec,
true /* ceil_mode */);
// adjust padding until output sizes agree
bool all_equal = false;
while (!all_equal) {
output_sizes = pool_output_sizes(
input.sizes(),
kernel_size_vec,
stride_vec,
padding_vec_l,
padding_vec_r,
dilation_vec,
false /*ceil_mode */);
all_equal = true;
for (size_t i = 2; i < input.sizes().size(); ++i) {
if (output_sizes[i] < output_sizes_ceil[i]) {
padding_vec_r[i - 2]++;
all_equal = false;
}
}
}
} else {
output_sizes = pool_output_sizes(
input.sizes(),
kernel_size_vec,
stride_vec,
padding_vec_l,
padding_vec_r,
dilation_vec,
false /*ceil_mode */);
}
ideep::tensor y;
ideep::pooling_forward::compute<AllocForMKLDNN>(
x,
{output_sizes.cbegin(), output_sizes.cend()},
y,
{stride_vec.cbegin(), stride_vec.cend()},
{kernel_size_vec.cbegin(), kernel_size_vec.cend()},
{padding_vec_l.cbegin(), padding_vec_l.cend()},
{padding_vec_r.cbegin(), padding_vec_r.cend()},
algo,
ideep::prop_kind::forward);
return new_with_itensor_mkldnn(std::move(y), input.options());
}
Tensor mkldnn_max_pool2d(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {
return _mkldnn_pool2d(
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode,
ideep::algorithm::pooling_max);
}
Tensor mkldnn_avg_pool2d(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override) {
TORCH_CHECK(!divisor_override.has_value(),
"mkldnn_avg_pool2d operator does not support divisor");
return _mkldnn_pool2d(
input,
kernel_size,
stride,
padding,
/*dilation*/ std::vector<int64_t>{1, 1},
ceil_mode,
count_include_pad ? ideep::algorithm::pooling_avg_include_padding
: ideep::algorithm::pooling_avg_exclude_padding);
}
Tensor& mkldnn_avg_pool2d_out(
Tensor& output,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override) {
AT_ERROR(
"mkldnn_avg_pool2d_out: in-place mkldnn operations are not supported yet");
}
Tensor mkldnn_adaptive_avg_pool2d(
Tensor const& input,
IntArrayRef output_size) {
AT_ASSERTM(input.dim() == 4, "mkldnn_adaptive_avg_pool2d: Expect 2D input");
auto output_size_vec =
expand_param_if_needed(output_size, "output_size", input.dim() - 2);
std::vector<int64_t> kernel_size(input.dim() - 2);
for (int64_t i = 2; i < input.dim(); ++i) {
auto s1 = input.size(i);
auto s2 = output_size_vec[i - 2];
AT_ASSERTM(s2 != 0, "output size can not be zero");
AT_ASSERTM(
s1 % s2 == 0,
"input size is not divisible by the output size is not supported yet");
kernel_size[i - 2] = s1 / s2;
}
return _mkldnn_pool2d(
input,
kernel_size,
/*stride*/ kernel_size,
/*padding*/ {0, 0},
/*dilation*/ {1, 1},
/*ceil_mode*/ false,
/*algo*/ ideep::algorithm::pooling_avg);
}
Tensor& mkldnn_adaptive_avg_pool2d_out(
Tensor& output,
const Tensor& input,
IntArrayRef output_size) {
AT_ERROR(
"mkldnn_adaptive_avg_pool2d_out: in-place mkldnn operations are not supported yet");
}
} // namespace native
} // namespace at
#endif // AT_MKLDNN_ENABLED