-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy patheval_save.py
153 lines (136 loc) · 5.89 KB
/
eval_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from transformers import BertTokenizer, BertForMaskedLM, BertModel
from tokenizer import *
import pickle
from torch.utils.data import DataLoader
import os
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from data import help_tokenize, load_paired_data,FunctionDataset_CL
from transformers import AdamW
import torch.nn.functional as F
import argparse
import wandb
import logging
import sys
import time
import data
WANDB = True
def get_logger(name):
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', filename=name)
logger = logging.getLogger(__name__)
s_handle = logging.StreamHandler(sys.stdout)
s_handle.setLevel(logging.INFO)
s_handle.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(filename)s[:%(lineno)d] - %(message)s"))
logger.addHandler(s_handle)
return logger
def eval(model, args, valid_set, logger):
if WANDB:
wandb.init(project=f'jTrans-finetune')
wandb.config.update(args)
logger.info("Initializing Model...")
device = torch.device("cuda")
model.to(device)
logger.info("Finished Initialization...")
valid_dataloader = DataLoader(valid_set, batch_size=args.eval_batch_size, num_workers=24, shuffle=True)
global_steps = 0
etc=0
logger.info(f"Doing Evaluation ...")
mrr = finetune_eval(model, valid_dataloader)
logger.info(f"Evaluate: mrr={mrr}")
if WANDB:
wandb.log({
'mrr': mrr
})
def finetune_eval(net, data_loader):
net.eval()
print(net)
with torch.no_grad():
avg=[]
gt=[]
cons=[]
eval_iterator = tqdm(data_loader)
for i, (seq1,seq2,seq3,mask1,mask2,mask3) in enumerate(eval_iterator):
input_ids1, attention_mask1= seq1.cuda(),mask1.cuda()
input_ids2, attention_mask2= seq2.cuda(),mask2.cuda()
print(input_ids1.shape)
print(attention_mask1.shape)
anchor,pos=0,0
output=net(input_ids=input_ids1,attention_mask=attention_mask1)
#anchor=output.last_hidden_state[:,0:1,:]
anchor=output.pooler_output
output=net(input_ids=input_ids2,attention_mask=attention_mask2)
#pos=output.last_hidden_state[:,0:1,:]
pos=output.pooler_output
ans=0
for k in range(len(anchor)): # check every vector of (vA,vB)
vA=anchor[k:k+1].cpu()
sim=[]
for j in range(len(pos)):
vB=pos[j:j+1].cpu()
#vB=vB[0]
AB_sim=F.cosine_similarity(vA, vB).item()
sim.append(AB_sim)
if j!=k:
cons.append(AB_sim)
sim=np.array(sim)
y=np.argsort(-sim)
posi=0
for j in range(len(pos)):
if y[j]==k:
posi=j+1
gt.append(sim[k])
ans+=1/posi
ans=ans/len(anchor)
avg.append(ans)
print("now mrr ",np.mean(np.array(avg)))
fi=open("logft.txt","a")
print("MRR ",np.mean(np.array(avg)),file=fi)
print("FINAL MRR ",np.mean(np.array(avg)))
fi.close()
return np.mean(np.array(avg))
class BinBertModel(BertModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings.position_embeddings=self.embeddings.word_embeddings
from datautils.playdata import DatasetBase as DatasetBase
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="jTrans-EvalSave")
parser.add_argument("--model_path", type=str, default='./models/jTrans-finetune', help="Path to the model")
parser.add_argument("--dataset_path", type=str, default='./BinaryCorp/small_test', help="Path to the dataset")
parser.add_argument("--experiment_path", type=str, default='./experiments/BinaryCorp-3M/jTrans.pkl', help="Path to the experiment")
parser.add_argument("--tokenizer", type=str, default='./jtrans_tokenizer/')
args = parser.parse_args()
from datetime import datetime
now = datetime.now() # current date and time
TIMESTAMP="%Y%m%d%H%M"
tim = now.strftime(TIMESTAMP)
logger = get_logger(f"jTrans-{args.model_path}-eval-{args.dataset_path}_savename_{args.experiment_path}_{tim}")
logger.info(f"Loading Pretrained Model from {args.model_path} ...")
model = BinBertModel.from_pretrained(args.model_path)
model.eval()
device = torch.device("cuda")
model.to(device)
logger.info("Done ...")
tokenizer = BertTokenizer.from_pretrained(args.tokenizer)
logger.info("Tokenizer Done ...")
logger.info("Preparing Datasets ...")
ft_valid_dataset=FunctionDataset_CL(tokenizer,args.dataset_path,None,True,opt=['O0', 'O1', 'O2', 'O3', 'Os'], add_ebd=True, convert_jump_addr=True)
for i in tqdm(range(len(ft_valid_dataset.datas))):
pairs=ft_valid_dataset.datas[i]
for j in ['O0','O1','O2','O3','Os']:
if ft_valid_dataset.ebds[i].get(j) is not None:
idx=ft_valid_dataset.ebds[i][j]
ret1=tokenizer([pairs[idx]], add_special_tokens=True,max_length=512,padding='max_length',truncation=True,return_tensors='pt') #tokenize them
seq1=ret1['input_ids']
mask1=ret1['attention_mask']
input_ids1, attention_mask1= seq1.cuda(),mask1.cuda()
output=model(input_ids=input_ids1,attention_mask=attention_mask1)
anchor=output.pooler_output
ft_valid_dataset.ebds[i][j]=anchor.detach().cpu()
logger.info("ebds start writing")
fi=open(args.experiment_path,'wb')
pickle.dump(ft_valid_dataset.ebds,fi)
fi.close()