-
Notifications
You must be signed in to change notification settings - Fork 0
/
JDHUFF.PAS
1108 lines (923 loc) · 33.1 KB
/
JDHUFF.PAS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Unit JdHuff;
{ This file contains declarations for Huffman entropy decoding routines
that are shared between the sequential decoder (jdhuff.c) and the
progressive decoder (jdphuff.c). No other modules need to see these. }
{ This file contains Huffman entropy decoding routines.
Much of the complexity here has to do with supporting input suspension.
If the data source module demands suspension, we want to be able to back
up to the start of the current MCU. To do this, we copy state variables
into local working storage, and update them back to the permanent
storage only upon successful completion of an MCU. }
{ Original: jdhuff.h+jdhuff.c; Copyright (C) 1991-1996, Thomas G. Lane. }
interface
{$I jconfig.inc}
uses
jmorecfg,
jinclude,
jdeferr,
jerror,
jutils,
jpeglib;
{ Declarations shared with jdphuff.c }
{ Derived data constructed for each Huffman table }
const
HUFF_LOOKAHEAD = 8; { # of bits of lookahead }
type
d_derived_tbl_ptr = ^d_derived_tbl;
d_derived_tbl = record
{ Basic tables: (element [0] of each array is unused) }
mincode : array[0..17-1] of INT32; { smallest code of length k }
maxcode : array[0..18-1] of INT32; { largest code of length k (-1 if none) }
{ (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) }
valptr : array[0..17-1] of int;
{ huffval[] index of 1st symbol of length k }
{ Link to public Huffman table (needed only in jpeg_huff_decode) }
pub : JHUFF_TBL_PTR;
{ Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
the input data stream. If the next Huffman code is no more
than HUFF_LOOKAHEAD bits long, we can obtain its length and
the corresponding symbol directly from these tables. }
look_nbits : array[0..(1 shl HUFF_LOOKAHEAD)-1] of int;
{ # bits, or 0 if too long }
look_sym : array[0..(1 shl HUFF_LOOKAHEAD)-1] of UINT8;
{ symbol, or unused }
end;
{ Fetching the next N bits from the input stream is a time-critical operation
for the Huffman decoders. We implement it with a combination of inline
macros and out-of-line subroutines. Note that N (the number of bits
demanded at one time) never exceeds 15 for JPEG use.
We read source bytes into get_buffer and dole out bits as needed.
If get_buffer already contains enough bits, they are fetched in-line
by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
as full as possible (not just to the number of bits needed; this
prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
at least the requested number of bits --- dummy zeroes are inserted if
necessary. }
type
bit_buf_type = INT32 ; { type of bit-extraction buffer }
const
BIT_BUF_SIZE = 32; { size of buffer in bits }
{ If long is > 32 bits on your machine, and shifting/masking longs is
reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
appropriately should be a win. Unfortunately we can't do this with
something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
because not all machines measure sizeof in 8-bit bytes. }
type
bitread_perm_state = record { Bitreading state saved across MCUs }
get_buffer : bit_buf_type; { current bit-extraction buffer }
bits_left : int; { # of unused bits in it }
printed_eod : boolean; { flag to suppress multiple warning msgs }
end;
type
bitread_working_state = record
{ Bitreading working state within an MCU }
{ current data source state }
next_input_byte : JOCTETptr; { => next byte to read from source }
bytes_in_buffer : size_t; { # of bytes remaining in source buffer }
unread_marker : int; { nonzero if we have hit a marker }
{ bit input buffer --- note these values are kept in register variables,
not in this struct, inside the inner loops. }
get_buffer : bit_buf_type; { current bit-extraction buffer }
bits_left : int; { # of unused bits in it }
{ pointers needed by jpeg_fill_bit_buffer }
cinfo : j_decompress_ptr; { back link to decompress master record }
printed_eod_ptr : ^boolean; { => flag in permanent state }
end;
{ Module initialization routine for Huffman entropy decoding. }
{GLOBAL}
procedure jinit_huff_decoder (cinfo : j_decompress_ptr);
{GLOBAL}
function jpeg_huff_decode(var state : bitread_working_state;
get_buffer : bit_buf_type; {register}
bits_left : int; {register}
htbl : d_derived_tbl_ptr;
min_bits : int) : int;
{ Compute the derived values for a Huffman table.
Note this is also used by jdphuff.c. }
{GLOBAL}
procedure jpeg_make_d_derived_tbl (cinfo : j_decompress_ptr;
htbl : JHUFF_TBL_PTR;
var pdtbl : d_derived_tbl_ptr);
{ Load up the bit buffer to a depth of at least nbits }
function jpeg_fill_bit_buffer (var state : bitread_working_state;
get_buffer : bit_buf_type; {register}
bits_left : int; {register}
nbits : int) : boolean;
implementation
{$IFDEF MACRO}
{ Macros to declare and load/save bitread local variables. }
{$define BITREAD_STATE_VARS}
get_buffer : bit_buf_type ; {register}
bits_left : int; {register}
br_state : bitread_working_state;
{$define BITREAD_LOAD_STATE(cinfop,permstate)}
br_state.cinfo := cinfop;
br_state.next_input_byte := cinfop^.src^.next_input_byte;
br_state.bytes_in_buffer := cinfop^.src^.bytes_in_buffer;
br_state.unread_marker := cinfop^.unread_marker;
get_buffer := permstate.get_buffer;
bits_left := permstate.bits_left;
br_state.printed_eod_ptr := & permstate.printed_eod
{$define BITREAD_SAVE_STATE(cinfop,permstate) }
cinfop^.src^.next_input_byte := br_state.next_input_byte;
cinfop^.src^.bytes_in_buffer := br_state.bytes_in_buffer;
cinfop^.unread_marker := br_state.unread_marker;
permstate.get_buffer := get_buffer;
permstate.bits_left := bits_left;
{ These macros provide the in-line portion of bit fetching.
Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
before using GET_BITS, PEEK_BITS, or DROP_BITS.
The variables get_buffer and bits_left are assumed to be locals,
but the state struct might not be (jpeg_huff_decode needs this).
CHECK_BIT_BUFFER(state,n,action);
Ensure there are N bits in get_buffer; if suspend, take action.
val = GET_BITS(n);
Fetch next N bits.
val = PEEK_BITS(n);
Fetch next N bits without removing them from the buffer.
DROP_BITS(n);
Discard next N bits.
The value N should be a simple variable, not an expression, because it
is evaluated multiple times. }
{$define CHECK_BIT_BUFFER(state,nbits,action)}
if (bits_left < (nbits)) then
begin
if (not jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) then
begin
action;
exit;
end;
get_buffer := state.get_buffer;
bits_left := state.bits_left;
end;
{$define GET_BITS(nbits)}
Dec(bits_left, (nbits));
( (int(get_buffer shr bits_left)) and ( pred(1 shl (nbits)) ) )
{$define PEEK_BITS(nbits)}
int(get_buffer shr (bits_left - (nbits))) and pred(1 shl (nbits))
{$define DROP_BITS(nbits)}
Dec(bits_left, nbits);
{ Code for extracting next Huffman-coded symbol from input bit stream.
Again, this is time-critical and we make the main paths be macros.
We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
without looping. Usually, more than 95% of the Huffman codes will be 8
or fewer bits long. The few overlength codes are handled with a loop,
which need not be inline code.
Notes about the HUFF_DECODE macro:
1. Near the end of the data segment, we may fail to get enough bits
for a lookahead. In that case, we do it the hard way.
2. If the lookahead table contains no entry, the next code must be
more than HUFF_LOOKAHEAD bits long.
3. jpeg_huff_decode returns -1 if forced to suspend. }
macro HUFF_DECODE(s,br_state,htbl,return FALSE,slowlabel);
label showlabel;
var
nb, look : int; {register}
begin
if (bits_left < HUFF_LOOKAHEAD) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then
begin
decode_mcu := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
if (bits_left < HUFF_LOOKAHEAD) then
begin
nb := 1;
goto slowlabel;
end;
end;
{look := PEEK_BITS(HUFF_LOOKAHEAD);}
look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and
pred(1 shl HUFF_LOOKAHEAD);
nb := htbl^.look_nbits[look];
if (nb <> 0) then
begin
{DROP_BITS(nb);}
Dec(bits_left, nb);
s := htbl^.look_sym[look];
end
else
begin
nb := HUFF_LOOKAHEAD+1;
slowlabel:
s := jpeg_huff_decode(br_state,get_buffer,bits_left,htbl,nb));
if (s < 0) then
begin
result := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
end;
{$ENDIF} {MACRO}
{ Expanded entropy decoder object for Huffman decoding.
The savable_state subrecord contains fields that change within an MCU,
but must not be updated permanently until we complete the MCU. }
type
savable_state = record
last_dc_val : array[0..MAX_COMPS_IN_SCAN-1] of int; { last DC coef for each component }
end;
type
huff_entropy_ptr = ^huff_entropy_decoder;
huff_entropy_decoder = record
pub : jpeg_entropy_decoder; { public fields }
{ These fields are loaded into local variables at start of each MCU.
In case of suspension, we exit WITHOUT updating them. }
bitstate : bitread_perm_state; { Bit buffer at start of MCU }
saved : savable_state; { Other state at start of MCU }
{ These fields are NOT loaded into local working state. }
restarts_to_go : uInt; { MCUs left in this restart interval }
{ Pointers to derived tables (these workspaces have image lifespan) }
dc_derived_tbls : array[0..NUM_HUFF_TBLS] of d_derived_tbl_ptr;
ac_derived_tbls : array[0..NUM_HUFF_TBLS] of d_derived_tbl_ptr;
end;
{ Initialize for a Huffman-compressed scan. }
{METHODDEF}
procedure start_pass_huff_decoder (cinfo : j_decompress_ptr); far;
var
entropy : huff_entropy_ptr;
ci, dctbl, actbl : int;
compptr : jpeg_component_info_ptr;
begin
entropy := huff_entropy_ptr (cinfo^.entropy);
{ Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
This ought to be an error condition, but we make it a warning because
there are some baseline files out there with all zeroes in these bytes. }
if (cinfo^.Ss <> 0) or (cinfo^.Se <> DCTSIZE2-1) or
(cinfo^.Ah <> 0) or (cinfo^.Al <> 0) then
WARNMS(j_common_ptr(cinfo), JWRN_NOT_SEQUENTIAL);
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
dctbl := compptr^.dc_tbl_no;
actbl := compptr^.ac_tbl_no;
{ Make sure requested tables are present }
if (dctbl < 0) or (dctbl >= NUM_HUFF_TBLS) or
(cinfo^.dc_huff_tbl_ptrs[dctbl] = NIL) then
ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, dctbl);
if (actbl < 0) or (actbl >= NUM_HUFF_TBLS) or
(cinfo^.ac_huff_tbl_ptrs[actbl] = NIL) then
ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, actbl);
{ Compute derived values for Huffman tables }
{ We may do this more than once for a table, but it's not expensive }
jpeg_make_d_derived_tbl(cinfo, cinfo^.dc_huff_tbl_ptrs[dctbl],
{var} entropy^.dc_derived_tbls[dctbl]);
jpeg_make_d_derived_tbl(cinfo, cinfo^.ac_huff_tbl_ptrs[actbl],
{var} entropy^.ac_derived_tbls[actbl]);
{ Initialize DC predictions to 0 }
entropy^.saved.last_dc_val[ci] := 0;
end;
{ Initialize bitread state variables }
entropy^.bitstate.bits_left := 0;
entropy^.bitstate.get_buffer := 0; { unnecessary, but keeps Purify quiet }
entropy^.bitstate.printed_eod := FALSE;
{ Initialize restart counter }
entropy^.restarts_to_go := cinfo^.restart_interval;
end;
{ Compute the derived values for a Huffman table.
Note this is also used by jdphuff.c. }
{GLOBAL}
procedure jpeg_make_d_derived_tbl (cinfo : j_decompress_ptr;
htbl : JHUFF_TBL_PTR;
var pdtbl : d_derived_tbl_ptr);
var
dtbl : d_derived_tbl_ptr;
p, i, l, si : int;
lookbits, ctr : int;
huffsize : array[0..257-1] of byte;
huffcode : array[0..257-1] of uInt;
code : uInt;
begin
{ Allocate a workspace if we haven't already done so. }
if (pdtbl = NIL) then
pdtbl := d_derived_tbl_ptr(
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(d_derived_tbl)) );
dtbl := pdtbl;
dtbl^.pub := htbl; { fill in back link }
{ Figure C.1: make table of Huffman code length for each symbol }
{ Note that this is in code-length order. }
p := 0;
for l := 1 to 16 do
begin
for i := 1 to int(htbl^.bits[l]) do
begin
huffsize[p] := byte(l);
Inc(p);
end;
end;
huffsize[p] := 0;
{ Figure C.2: generate the codes themselves }
{ Note that this is in code-length order. }
code := 0;
si := huffsize[0];
p := 0;
while (huffsize[p] <> 0) do
begin
while (( int (huffsize[p]) ) = si) do
begin
huffcode[p] := code;
Inc(p);
Inc(code);
end;
code := code shl 1;
Inc(si);
end;
{ Figure F.15: generate decoding tables for bit-sequential decoding }
p := 0;
for l := 1 to 16 do
begin
if (htbl^.bits[l] <> 0) then
begin
dtbl^.valptr[l] := p; { huffval[] index of 1st symbol of code length l }
dtbl^.mincode[l] := huffcode[p]; { minimum code of length l }
Inc(p, htbl^.bits[l]);
dtbl^.maxcode[l] := huffcode[p-1]; { maximum code of length l }
end
else
begin
dtbl^.maxcode[l] := -1; { -1 if no codes of this length }
end;
end;
dtbl^.maxcode[17] := long($FFFFF); { ensures jpeg_huff_decode terminates }
{ Compute lookahead tables to speed up decoding.
First we set all the table entries to 0, indicating "too long";
then we iterate through the Huffman codes that are short enough and
fill in all the entries that correspond to bit sequences starting
with that code. }
MEMZERO(@dtbl^.look_nbits, SIZEOF(dtbl^.look_nbits));
p := 0;
for l := 1 to HUFF_LOOKAHEAD do
begin
for i := 1 to int (htbl^.bits[l]) do
begin
{ l := current code's length, p := its index in huffcode[] & huffval[]. }
{ Generate left-justified code followed by all possible bit sequences }
lookbits := huffcode[p] shl (HUFF_LOOKAHEAD-l);
for ctr := pred(1 shl (HUFF_LOOKAHEAD-l)) downto 0 do
begin
dtbl^.look_nbits[lookbits] := l;
dtbl^.look_sym[lookbits] := htbl^.huffval[p];
Inc(lookbits);
end;
Inc(p);
end;
end;
end;
{ Out-of-line code for bit fetching (shared with jdphuff.c).
See jdhuff.h for info about usage.
Note: current values of get_buffer and bits_left are passed as parameters,
but are returned in the corresponding fields of the state struct.
On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
of get_buffer to be used. (On machines with wider words, an even larger
buffer could be used.) However, on some machines 32-bit shifts are
quite slow and take time proportional to the number of places shifted.
(This is true with most PC compilers, for instance.) In this case it may
be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
average shift distance at the cost of more calls to jpeg_fill_bit_buffer. }
{$ifdef SLOW_SHIFT_32}
const
MIN_GET_BITS = 15; { minimum allowable value }
{$else}
const
MIN_GET_BITS = (BIT_BUF_SIZE-7);
{$endif}
{GLOBAL}
function jpeg_fill_bit_buffer (var state : bitread_working_state;
{register} get_buffer : bit_buf_type;
{register} bits_left : int;
nbits : int) : boolean;
label
no_more_data;
{ Load up the bit buffer to a depth of at least nbits }
var
{ Copy heavily used state fields into locals (hopefully registers) }
{register} next_input_byte : {const} JOCTETptr;
{register} bytes_in_buffer : size_t;
{register} c : int;
begin
next_input_byte := state.next_input_byte;
bytes_in_buffer := state.bytes_in_buffer;
{ Attempt to load at least MIN_GET_BITS bits into get_buffer. }
{ (It is assumed that no request will be for more than that many bits.) }
while (bits_left < MIN_GET_BITS) do
begin
{ Attempt to read a byte }
if (state.unread_marker <> 0) then
goto no_more_data; { can't advance past a marker }
if (bytes_in_buffer = 0) then
begin
if (not state.cinfo^.src^.fill_input_buffer (state.cinfo)) then
begin
jpeg_fill_bit_buffer := FALSE;
exit;
end;
next_input_byte := state.cinfo^.src^.next_input_byte;
bytes_in_buffer := state.cinfo^.src^.bytes_in_buffer;
end;
Dec(bytes_in_buffer);
c := GETJOCTET(next_input_byte^);
Inc(next_input_byte);
{ If it's $FF, check and discard stuffed zero byte }
if (c = $FF) then
begin
repeat
if (bytes_in_buffer = 0) then
begin
if (not state.cinfo^.src^.fill_input_buffer (state.cinfo)) then
begin
jpeg_fill_bit_buffer := FALSE;
exit;
end;
next_input_byte := state.cinfo^.src^.next_input_byte;
bytes_in_buffer := state.cinfo^.src^.bytes_in_buffer;
end;
Dec(bytes_in_buffer);
c := GETJOCTET(next_input_byte^);
Inc(next_input_byte);
Until (c <> $FF);
if (c = 0) then
begin
{ Found FF/00, which represents an FF data byte }
c := $FF;
end
else
begin
{ Oops, it's actually a marker indicating end of compressed data. }
{ Better put it back for use later }
state.unread_marker := c;
no_more_data:
{ There should be enough bits still left in the data segment; }
{ if so, just break out of the outer while loop. }
if (bits_left >= nbits) then
break;
{ Uh-oh. Report corrupted data to user and stuff zeroes into
the data stream, so that we can produce some kind of image.
Note that this code will be repeated for each byte demanded
for the rest of the segment. We use a nonvolatile flag to ensure
that only one warning message appears. }
if (not state.printed_eod_ptr^) then
begin
WARNMS(j_common_ptr(state.cinfo), JWRN_HIT_MARKER);
state.printed_eod_ptr^ := TRUE;
end;
c := 0; { insert a zero byte into bit buffer }
end;
end;
{ OK, load c into get_buffer }
get_buffer := (get_buffer shl 8) or c;
Inc(bits_left, 8);
end;
{ Unload the local registers }
state.next_input_byte := next_input_byte;
state.bytes_in_buffer := bytes_in_buffer;
state.get_buffer := get_buffer;
state.bits_left := bits_left;
jpeg_fill_bit_buffer := TRUE;
end;
{ Out-of-line code for Huffman code decoding.
See jdhuff.h for info about usage. }
{GLOBAL}
function jpeg_huff_decode (var state : bitread_working_state;
{register} get_buffer : bit_buf_type;
{register} bits_left : int;
htbl : d_derived_tbl_ptr;
min_bits : int) : int;
var
{register} l : int;
{register} code : INT32;
begin
l := min_bits;
{ HUFF_DECODE has determined that the code is at least min_bits }
{ bits long, so fetch that many bits in one swoop. }
{CHECK_BIT_BUFFER(state, l, return -1);}
if (bits_left < l) then
begin
if (not jpeg_fill_bit_buffer(state, get_buffer, bits_left, l)) then
begin
jpeg_huff_decode := -1;
exit;
end;
get_buffer := state.get_buffer;
bits_left := state.bits_left;
end;
{code := GET_BITS(l);}
Dec(bits_left, l);
code := (int(get_buffer shr bits_left)) and ( pred(1 shl l) );
{ Collect the rest of the Huffman code one bit at a time. }
{ This is per Figure F.16 in the JPEG spec. }
while (code > htbl^.maxcode[l]) do
begin
code := code shl 1;
{CHECK_BIT_BUFFER(state, 1, return -1);}
if (bits_left < 1) then
begin
if (not jpeg_fill_bit_buffer(state, get_buffer, bits_left, 1)) then
begin
jpeg_huff_decode := -1;
exit;
end;
get_buffer := state.get_buffer;
bits_left := state.bits_left;
end;
{code := code or GET_BITS(1);}
Dec(bits_left);
code := code or ( (int(get_buffer shr bits_left)) and pred(1 shl 1) );
Inc(l);
end;
{ Unload the local registers }
state.get_buffer := get_buffer;
state.bits_left := bits_left;
{ With garbage input we may reach the sentinel value l := 17. }
if (l > 16) then
begin
WARNMS(j_common_ptr(state.cinfo), JWRN_HUFF_BAD_CODE);
jpeg_huff_decode := 0; { fake a zero as the safest result }
exit;
end;
jpeg_huff_decode := htbl^.pub^.huffval[ htbl^.valptr[l] +
( int (code - htbl^.mincode[l])) ];
end;
{ Figure F.12: extend sign bit.
On some machines, a shift and add will be faster than a table lookup. }
{$ifdef AVOID_TABLES}
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
{$else}
{$define HUFF_EXTEND(x,s)
if (x < extend_test[s]) then
:= x + extend_offset[s]
else
x;}
const
extend_test : array[0..16-1] of int = { entry n is 2**(n-1) }
($0000, $0001, $0002, $0004, $0008, $0010, $0020, $0040,
$0080, $0100, $0200, $0400, $0800, $1000, $2000, $4000);
const
extend_offset : array[0..16-1] of int = { entry n is (-1 << n) + 1 }
(0, ((-1) shl 1) + 1, ((-1) shl 2) + 1, ((-1) shl 3) + 1, ((-1) shl 4) + 1,
((-1) shl 5) + 1, ((-1) shl 6) + 1, ((-1) shl 7) + 1, ((-1) shl 8) + 1,
((-1) shl 9) + 1, ((-1) shl 10) + 1, ((-1) shl 11) + 1,((-1) shl 12) + 1,
((-1) shl 13) + 1, ((-1) shl 14) + 1, ((-1) shl 15) + 1);
{$endif} { AVOID_TABLES }
{ Check for a restart marker & resynchronize decoder.
Returns FALSE if must suspend. }
{LOCAL}
function process_restart (cinfo : j_decompress_ptr) : boolean;
var
entropy : huff_entropy_ptr;
ci : int;
begin
entropy := huff_entropy_ptr (cinfo^.entropy);
{ Throw away any unused bits remaining in bit buffer; }
{ include any full bytes in next_marker's count of discarded bytes }
Inc(cinfo^.marker^.discarded_bytes, entropy^.bitstate.bits_left div 8);
entropy^.bitstate.bits_left := 0;
{ Advance past the RSTn marker }
if (not cinfo^.marker^.read_restart_marker (cinfo)) then
begin
process_restart := FALSE;
exit;
end;
{ Re-initialize DC predictions to 0 }
for ci := 0 to pred(cinfo^.comps_in_scan) do
entropy^.saved.last_dc_val[ci] := 0;
{ Reset restart counter }
entropy^.restarts_to_go := cinfo^.restart_interval;
{ Next segment can get another out-of-data warning }
entropy^.bitstate.printed_eod := FALSE;
process_restart := TRUE;
end;
{ Decode and return one MCU's worth of Huffman-compressed coefficients.
The coefficients are reordered from zigzag order into natural array order,
but are not dequantized.
The i'th block of the MCU is stored into the block pointed to by
MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
(Wholesale zeroing is usually a little faster than retail...)
Returns FALSE if data source requested suspension. In that case no
changes have been made to permanent state. (Exception: some output
coefficients may already have been assigned. This is harmless for
this module, since we'll just re-assign them on the next call.) }
{METHODDEF}
function decode_mcu (cinfo : j_decompress_ptr;
var MCU_data : array of JBLOCKROW) : boolean; far;
label
skip_ACs, label1, label2, label3;
var
entropy : huff_entropy_ptr;
{register} s, k, r : int;
blkn, ci : int;
block : JBLOCK_PTR;
{BITREAD_STATE_VARS}
get_buffer : bit_buf_type ; {register}
bits_left : int; {register}
br_state : bitread_working_state;
state : savable_state;
dctbl : d_derived_tbl_ptr;
actbl : d_derived_tbl_ptr;
compptr : jpeg_component_info_ptr;
var
nb, look : int; {register}
begin
entropy := huff_entropy_ptr (cinfo^.entropy);
{ Process restart marker if needed; may have to suspend }
if (cinfo^.restart_interval <> 0) then
begin
if (entropy^.restarts_to_go = 0) then
if (not process_restart(cinfo)) then
begin
decode_mcu := FALSE;
exit;
end;
end;
{ Load up working state }
{BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);}
br_state.cinfo := cinfo;
br_state.next_input_byte := cinfo^.src^.next_input_byte;
br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer;
br_state.unread_marker := cinfo^.unread_marker;
get_buffer := entropy^.bitstate.get_buffer;
bits_left := entropy^.bitstate.bits_left;
br_state.printed_eod_ptr := @entropy^.bitstate.printed_eod;
{ASSIGN_STATE(state, entropy^.saved);}
state := entropy^.saved;
{ Outer loop handles each block in the MCU }
for blkn := 0 to pred(cinfo^.blocks_in_MCU) do
begin
block := JBLOCK_PTR(MCU_data[blkn]);
ci := cinfo^.MCU_membership[blkn];
compptr := cinfo^.cur_comp_info[ci];
dctbl := entropy^.dc_derived_tbls[compptr^.dc_tbl_no];
actbl := entropy^.ac_derived_tbls[compptr^.ac_tbl_no];
{ Decode a single block's worth of coefficients }
{ Section F.2.2.1: decode the DC coefficient difference }
{HUFF_DECODE(s, br_state, dctbl, return FALSE, showlabel);}
if (bits_left < HUFF_LOOKAHEAD) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then
begin
decode_mcu := False;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
if (bits_left < HUFF_LOOKAHEAD) then
begin
nb := 1;
goto label1;
end;
end;
{look := PEEK_BITS(HUFF_LOOKAHEAD);}
look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and
pred(1 shl HUFF_LOOKAHEAD);
nb := dctbl^.look_nbits[look];
if (nb <> 0) then
begin
{DROP_BITS(nb);}
Dec(bits_left, nb);
s := dctbl^.look_sym[look];
end
else
begin
nb := HUFF_LOOKAHEAD+1;
label1:
s := jpeg_huff_decode(br_state,get_buffer,bits_left,dctbl,nb);
if (s < 0) then
begin
decode_mcu := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
if (s <> 0) then
begin
{CHECK_BIT_BUFFER(br_state, s, return FALSE);}
if (bits_left < s) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then
begin
decode_mcu := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{r := GET_BITS(s);}
Dec(bits_left, s);
r := ( int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);}
if (r < extend_test[s]) then
s := r + extend_offset[s]
else
s := r;
end;
{ Shortcut if component's values are not interesting }
if (not compptr^.component_needed) then
goto skip_ACs;
{ Convert DC difference to actual value, update last_dc_val }
Inc(s, state.last_dc_val[ci]);
state.last_dc_val[ci] := s;
{ Output the DC coefficient (assumes jpeg_natural_order[0] := 0) }
block^[0] := JCOEF (s);
{ Do we need to decode the AC coefficients for this component? }
if (compptr^.DCT_scaled_size > 1) then
begin
{ Section F.2.2.2: decode the AC coefficients }
{ Since zeroes are skipped, output area must be cleared beforehand }
k := 1;
while (k < DCTSIZE2) do { don't use "for loop", since the induction }
begin { variable is incremented in the loop }
{HUFF_DECODE(s, br_state, actbl, return FALSE, label2);}
if (bits_left < HUFF_LOOKAHEAD) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then
begin
decode_mcu := False;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
if (bits_left < HUFF_LOOKAHEAD) then
begin
nb := 1;
goto label2;
end;
end;
{look := PEEK_BITS(HUFF_LOOKAHEAD);}
look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and
pred(1 shl HUFF_LOOKAHEAD);
nb := actbl^.look_nbits[look];
if (nb <> 0) then
begin
{DROP_BITS(nb);}
Dec(bits_left, nb);
s := actbl^.look_sym[look];
end
else
begin
nb := HUFF_LOOKAHEAD+1;
label2:
s := jpeg_huff_decode(br_state,get_buffer,bits_left,actbl,nb);
if (s < 0) then
begin
decode_mcu := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
r := s shr 4;
s := s and 15;
if (s <> 0) then
begin
Inc(k, r);
{CHECK_BIT_BUFFER(br_state, s, return FALSE);}
if (bits_left < s) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then
begin
decode_mcu := FALSE;
exit;
end;
get_buffer := br_state.get_buffer;
bits_left := br_state.bits_left;
end;
{r := GET_BITS(s);}
Dec(bits_left, s);
r := (int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);}
if (r < extend_test[s]) then
s := r + extend_offset[s]
else
s := r;
{ Output coefficient in natural (dezigzagged) order.
Note: the extra entries in jpeg_natural_order[] will save us
if k >= DCTSIZE2, which could happen if the data is corrupted. }
block^[jpeg_natural_order[k]] := JCOEF (s);
end
else
begin
if (r <> 15) then
break;
Inc(k, 15);
end;
Inc(k);
end;
end
else
begin
skip_ACs:
{ Section F.2.2.2: decode the AC coefficients }
{ In this path we just discard the values }
k := 1;
while (k < DCTSIZE2) do
begin
{HUFF_DECODE(s, br_state, actbl, return FALSE, label3);}
if (bits_left < HUFF_LOOKAHEAD) then
begin
if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then
begin
decode_mcu := False;
exit;
end;
get_buffer := br_state.get_buffer;