-
Notifications
You must be signed in to change notification settings - Fork 0
/
ekenv.py
306 lines (258 loc) · 11.6 KB
/
ekenv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#Note: in order to make the ExplodingKittens gym environment, I had adpted some parts of the code from https://github.com/adithyasolai/Monte-Carlo-Blackjack/blob/master/MC_Blackjack_Full.ipynb
import random
import numpy as np
import gym
from gym import error, spaces, utils
from gym.utils import seeding
rng = np.random.default_rng()
def initDeck(PLAYERS):
deck = [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11]
rng.shuffle(deck)
if(PLAYERS==2):
me = [0]*12
me[0] = 1
for i in range(7):
me[deck.pop()]+=1
op = [0]*12
op[0] = 1
for i in range(7):
op[deck.pop()]+=1
deck.extend([0 for i in range(1+(PLAYERS<5))])
deck.extend([-1 for i in range(PLAYERS-1)])
rng.shuffle(deck)
return deck, me, op
else:
raise NotImplementedError
def getPossibleMoves(deck,name,deckhandlens,numPlayable,victim=None,includeNone=True):
if(numPlayable == 0): return [0]*12
# print(numPlayable, deck, deckhandlens)
if(includeNone and not int(random.random()*(numPlayable+1))): return [0]*12
# if(includeNone and not random.randint(0,numPlayable)): return None
if(victim == None): victim = 1 if int(name)==0 else 0
possible = list(deck)
possible[0] = 0
possible[1] = 0
if deckhandlens[victim]:
possible[7] = possible[7]//2
possible[8] = possible[8]//2
possible[9] = possible[9]//2
possible[10] = possible[10]//2
possible[11] = possible[11]//2
else:
possible[4] = 0
possible[7] = 0
possible[8] = 0
possible[9] = 0
possible[10] = 0
possible[11] = 0
return possible
def giveRandomMove(deck,name,deckhandlens,numPlayable,victim=None,includeNone=True):
possible = getPossibleMoves(deck,name,deckhandlens,numPlayable,victim,includeNone)
if(possible==[0]*12): return None
numbers = [0,1,2,3,4,5,6,7,8,9,10,11]
# return weighted_random_choice(numbers, possible)
return random.choices(numbers, weights=possible, k=1)[0]
class Player: #RandomPlayer
def __init__(self, name, hand):
self.name = name
self.numPlayable = sum(hand[2:7]) + sum([hand[i]//2 for i in range(7,12)])
self.numCards = 8
self.hand = hand
def inform(self, player, move, moveData):
if(player!=self.name and move>=7 and moveData['victim']==int(self.name)):
cardtaken = moveData['cardtaken']
if(2<=cardtaken<=6): self.numPlayable -= 1
elif(cardtaken >= 7 and self.hand[cardtaken]%2==1): self.numPlayable -= 1
return
if(player==self.name and (move==4 or move>=7)):
cardtaken = moveData['cardtaken']
if(2<=cardtaken<=6): self.numPlayable += 1
elif(cardtaken >= 7 and self.hand[cardtaken]%2==0): self.numPlayable += 1
def getMove(self, deckhandlens):
#Return None = draw ONE card
chosenmove = giveRandomMove(self.hand,self.name,deckhandlens, self.numPlayable)
if(chosenmove!=None): self.numPlayable -= 1
# print('moving!', self.name, chosenmove)
return chosenmove
def cardDrawn(self,card): #THIS CANNOT BE OVERWRITTEN
if(card==-1):
if(not self.hand[0]):
return 0
else:
self.hand[0] -= 1
self.numCards -= 1
return 1
else:
self.hand[card] += 1
self.numCards += 1
if(card >= 7): #catcard
if(self.hand[card]%2==0):
self.numPlayable += 1
elif(card >= 2): #not catcard, but still playable
self.numPlayable += 1
return 2
def getFavored(self):
togiveaway = random.choices([0,1,2,3,4,5,6,7,8,9,10,11], weights=self.hand, k=1)[0]
self.hand[togiveaway] -= 1
self.numCards -= 1
if(2 <= togiveaway <= 6): self.numPlayable -= 1
elif(togiveaway >= 7 and self.hand[togiveaway]%2==1): self.numPlayable -= 1
return togiveaway
def reinsertEK(self, decklen):
return int(random.random()*(decklen+1))
class ExplodingKittensEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self): #changed
super(ExplodingKittensEnv, self).__init__()
# Initialize the blackjack deck.
self.deck, self.hand1, self.hand2 = initDeck(2)
self.me = 0
self.op = 1
self.lastcard3 = 0
self.lastcard2 = 0
self.lastcard = 0
self.toDraw = 1
self.movectr = 0
self.turnctr = 0
self.isfirstmove = True
self.players = [Player(0,self.hand1),Player(1,self.hand2)]
# self.reward_options = {"lose":-100, "tie":0, "win":100}
#Number of possible outputs
self.action_space = spaces.Discrete(11) #n-1, 0 = Take Card, n = n+1
#Number of possible inputs
self.observation_space = spaces.Tuple((
spaces.Discrete(6), #DEFUSE
spaces.Discrete(5), #NOPE
spaces.Discrete(4), #ATTACK
spaces.Discrete(4), #SKIP
spaces.Discrete(4), #FAVOR
spaces.Discrete(4), #SHUFFLE
spaces.Discrete(5), #STF
spaces.Discrete(4), #C1
spaces.Discrete(4), #C2
spaces.Discrete(4), #C3
spaces.Discrete(4), #C4
spaces.Discrete(4), #C4
spaces.Discrete(4), #C5
spaces.Discrete(57), #Num Left In deck
spaces.Discrete(8), #Num cards you have to take
spaces.Discrete(12), #Last Card
spaces.Discrete(12), #2nd Last Move
spaces.Discrete(12), #3rd Last Move
spaces.Discrete(57), #Num cards opponent has
spaces.Discrete(57), #Num moves played
))
self.done = False
def _process_move(self, turn, move):
# print('movemake!', turn, move)
if not move:
move = 0
# move = self.players[turn].getMove(self.toDraw, self.movectr, self.turnctr, [self.players[0].numCards, self.players[1].numCards])
turn %= 2
if(move):
self.lastcard3 = self.lastcard2
self.lastcard2 = self.lastcard
self.lastcard = move
self.players[turn].numCards -= 1
self.players[turn].hand[move] -= 1
if(move>=7):
self.players[turn].numCards -= 1
self.players[turn].hand[move] -= 1
victim = turn^1
# print('turn', turn, playerdecks[0], playerdecks[1], 'np0', players[0].numPlayable, 'np1', players[1].numPlayable, 'lendeck', len(deck), 'move', move)
# for player in players:
# player.inform(turn, move, victim if move==4 or move>=7 else None)
if(move==2):
self.toDraw = self.toDraw+1 if self.toDraw==1 else self.toDraw+2
turn += 1; turn %= 2
self.turnctr += 1
self.movectr += 1
elif(move==3):
turn += 1; turn %= 2
self.turnctr += 1
self.movectr += 1
elif(move==4):
favorcard = self.players[victim].getFavored()
# print('favorcard', favorcard)
self.players[turn].hand[favorcard] += 1
self.players[turn].numCards += 1
self.players[turn].inform(turn, move, {'victim': victim, 'cardtaken': favorcard})
elif(move==5):
rng.shuffle(self.deck)
elif(move==6):
self.players[turn].inform(turn,6,self.deck[:-4:-1])
elif(move>=7):
cardtaken = random.choices([0,1,2,3,4,5,6,7,8,9,10,11], weights=self.players[victim].hand, k=1)[0]
# print('cardtaken', cardtaken)
self.players[victim].hand[cardtaken] -= 1
self.players[victim].numCards -= 1
self.players[victim].inform(turn, move, {'victim': victim, 'cardtaken': cardtaken})
self.players[turn].hand[cardtaken] += 1
self.players[turn].numCards += 1
self.players[turn].inform(turn, move, {'victim': victim, 'cardtaken': cardtaken})
# print(self.deck)
if not move:
nextcard = self.deck.pop()
# print('nextcard', nextcard)
safe = self.players[turn].cardDrawn(nextcard)
self.movectr += 1
if(not safe): return turn^1; #players.pop(turn); self.toDraw = 1
else:
if(safe==1):
if(not self.deck): self.deck = [-1]
else:
self.deck.insert(self.players[turn].reinsertEK(len(self.deck)),-1)
self.toDraw -= 1
if(self.toDraw == 0): turn += 1; turn %= 2; self.toDraw = 1; self.turnctr += 1
return -1
def doEvaluation(self,winner):
result = 0
result = result+1000 if winner==self.me else result-1000
result += 5*(self.players[self.me].hand[0] - self.players[self.op].hand[0])
result += 2*(self.players[self.me].hand[2] - self.players[self.op].hand[2])
result += (self.players[self.me].hand[3] - self.players[self.op].hand[3])
return result
def _take_action(self, move):
if(self.isfirstmove and self.me == 1):
self.isfirstmove = False
opmove = self.players[0].getMove([self.players[0].numCards, self.players[1].numCards])
res = self._process_move(0,opmove)
if(res!=-1): return (res, self.doEvaluation(res))
res = self._process_move(self.me, move)
if(res!=-1): return (res, self.doEvaluation(res))
opmove = self.players[1].getMove([self.players[0].numCards, self.players[1].numCards])
res = self._process_move(self.op,opmove)
if(res!=-1): return (res, self.doEvaluation(res))
return -1
def step(self, action):
status = self._take_action(action)
# End the episode/game is the player stands or has a hand value >= 21.
self.done = type(status) == tuple
# rewards are 0 when the player hits and is still below 21, and they
# keep playing.
rewards = 0 if type(status) != tuple else status[1]
whowon = -1 if type(status)!=tuple else status[0]
# the state is represented as a player hand-value + dealer upcard pair.
obs = self.players[self.me].hand + [len(self.deck)] + [self.toDraw,self.lastcard,self.lastcard2,self.lastcard3] + [len(self.players[self.op].hand)] + [self.movectr]
# obs = np.array([player_value_obs, upcard_value_obs])
return obs, rewards, self.done, {}, whowon
def reset(self): # Changed
self.deck, self.hand1, self.hand2 = initDeck(2)
self.me = 0
self.op = 1
self.lastcard3 = 0
self.lastcard2 = 0
self.lastcard = 0
self.toDraw = 1
self.movectr = 0
self.turnctr = 0
self.isfirstmove = True
self.players = [Player(0,self.hand1),Player(1,self.hand2)]
# the state is represented as a player hand-value + dealer upcard pair.
obs = self.players[self.me].hand + [len(self.deck)] + [1,0,0,0] + [len(self.players[self.op].hand)] + [0]
return np.array(obs)
def render(self, mode='human', close=False): #Changed
# convert the player hand into a format that is
# easy to read and understand.
print(f'Hand: {self.players[self.me].hand} | Cards: {self.players[self.me].numCards} | Effectives: {self.players[self.me].hand[2] * 2 + self.players[self.me].hand[3]}')
print()