diff --git a/docs/source/models/supported_models.md b/docs/source/models/supported_models.md index eb1bde9ec0089..1ef384987bca3 100644 --- a/docs/source/models/supported_models.md +++ b/docs/source/models/supported_models.md @@ -759,7 +759,7 @@ See [this page](#generative-models) for more information on how to use generativ - Ultravox - T + AE+ - `fixie-ai/ultravox-v0_3` - - + - ✅︎ - ✅︎ - ✅︎ ``` diff --git a/tests/conftest.py b/tests/conftest.py index 95af4ac1eb17b..7415e3467880e 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -734,6 +734,7 @@ def generate( images: Optional[PromptImageInput] = None, videos: Optional[PromptVideoInput] = None, audios: Optional[PromptAudioInput] = None, + **kwargs: Any, ) -> List[Tuple[List[List[int]], List[str]]]: inputs = self.get_inputs(prompts, images=images, @@ -741,7 +742,8 @@ def generate( audios=audios) req_outputs = self.model.generate(inputs, - sampling_params=sampling_params) + sampling_params=sampling_params, + **kwargs) outputs: List[Tuple[List[List[int]], List[str]]] = [] for req_output in req_outputs: @@ -779,6 +781,7 @@ def generate_w_logprobs( images: Optional[PromptImageInput] = None, audios: Optional[PromptAudioInput] = None, videos: Optional[PromptVideoInput] = None, + **kwargs: Any, ) -> Union[List[TokensTextLogprobs], List[TokensTextLogprobsPromptLogprobs]]: inputs = self.get_inputs(prompts, @@ -787,7 +790,8 @@ def generate_w_logprobs( audios=audios) req_outputs = self.model.generate(inputs, - sampling_params=sampling_params) + sampling_params=sampling_params, + **kwargs) toks_str_logsprobs_prompt_logprobs = ( self._final_steps_generate_w_logprobs(req_outputs)) @@ -823,13 +827,15 @@ def generate_greedy( images: Optional[PromptImageInput] = None, videos: Optional[PromptVideoInput] = None, audios: Optional[PromptAudioInput] = None, + **kwargs: Any, ) -> List[Tuple[List[int], str]]: greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens) outputs = self.generate(prompts, greedy_params, images=images, videos=videos, - audios=audios) + audios=audios, + **kwargs) return [(output_ids[0], output_str[0]) for output_ids, output_str in outputs] @@ -844,6 +850,7 @@ def generate_greedy_logprobs( videos: Optional[PromptVideoInput] = None, stop_token_ids: Optional[List[int]] = None, stop: Optional[List[str]] = None, + **kwargs: Any, ) -> Union[List[TokensTextLogprobs], List[TokensTextLogprobsPromptLogprobs]]: greedy_logprobs_params = SamplingParams( @@ -858,7 +865,8 @@ def generate_greedy_logprobs( greedy_logprobs_params, images=images, audios=audios, - videos=videos) + videos=videos, + **kwargs) def generate_encoder_decoder_greedy_logprobs( self, diff --git a/tests/lora/test_ultravox.py b/tests/lora/test_ultravox.py new file mode 100644 index 0000000000000..e0049180710c3 --- /dev/null +++ b/tests/lora/test_ultravox.py @@ -0,0 +1,111 @@ +import shutil +from os import path +from tempfile import TemporaryDirectory +from typing import List, Tuple + +from huggingface_hub import snapshot_download +from safetensors.torch import load_file, save_file +from transformers import AutoTokenizer + +from vllm.lora.request import LoRARequest + +ULTRAVOX_MODEL_NAME = "fixie-ai/ultravox-v0_3" +LLMA_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct" + +VLLM_PLACEHOLDER = "<|reserved_special_token_0|>" + +PROMPT = "Tell me about a Fool's mate move in 20 words. Provide the moves!" + + +def llama3_1_8b_chess_lora_path(): + return snapshot_download( + repo_id="mkopecki/chess-lora-adapter-llama-3.1-8b") + + +# can't use llama lora adapter without module name transformation +# because ultravox nest language model +def transform_module_names_for_ultravox(state_dict): + transformed_state_dict = {} + for key, value in state_dict.items(): + new_key = key.replace("base_model.model", + "base_model.model.language_model") + transformed_state_dict[new_key] = value + return transformed_state_dict + + +def mk_llama3_1_8b_ultravox_chess_lora(source_repo, target_path): + tensor_file = "adapter_model.safetensors" + state_dict = load_file(path.join(source_repo, tensor_file)) + transformed_state_dict = transform_module_names_for_ultravox(state_dict) + + save_file(transformed_state_dict, path.join(target_path, tensor_file)) + + config_file = "adapter_config.json" + shutil.copyfile(path.join(source_repo, config_file), + path.join(target_path, config_file)) + return target_path + + +def _get_prompt(audio_count, question, placeholder, model_name) -> str: + tokenizer = AutoTokenizer.from_pretrained(model_name) + placeholder = f"{placeholder}\n" * audio_count + + return tokenizer.apply_chat_template([{ + 'role': 'user', + 'content': f"{placeholder}{question}" + }], + tokenize=False, + add_generation_prompt=True) + + +def test_ultravox_lora(vllm_runner): + """ + TODO: Train an Ultravox LoRA instead of using a Llama LoRA. + """ + llama3_1_8b_chess_lora = llama3_1_8b_chess_lora_path() + with TemporaryDirectory() as temp_ultravox_lora_dir: + llama3_1_8b_ultravox_chess_lora = mk_llama3_1_8b_ultravox_chess_lora( + llama3_1_8b_chess_lora, temp_ultravox_lora_dir) + with vllm_runner( + ULTRAVOX_MODEL_NAME, + enforce_eager=True, + max_num_seqs=128, + enable_lora=True, + max_loras=4, + max_lora_rank=128, + dtype="bfloat16", + max_model_len=4096, + ) as vllm_model: + ultravox_outputs: List[Tuple[ + List[int], str]] = vllm_model.generate_greedy( + [ + _get_prompt(0, PROMPT, VLLM_PLACEHOLDER, + ULTRAVOX_MODEL_NAME) + ], + 256, + lora_request=LoRARequest(str(1), 1, + llama3_1_8b_ultravox_chess_lora), + ) + + # run llama with and without lora to compare outputs with above + with vllm_runner( + LLMA_MODEL_NAME, + enforce_eager=True, + max_num_seqs=128, + enable_lora=True, + max_loras=4, + max_lora_rank=128, + dtype="bfloat16", + max_model_len=4096, + ) as vllm_model: + llama_outputs_no_lora: List[Tuple[List[int], str]] = ( + vllm_model.generate_greedy( + [_get_prompt(0, PROMPT, VLLM_PLACEHOLDER, LLMA_MODEL_NAME)], + 256, + )) + + _, llama_no_lora_str = llama_outputs_no_lora[0] + _, ultravox_str = ultravox_outputs[0] + + # verify that text don't match with no lora + assert llama_no_lora_str != ultravox_str diff --git a/vllm/model_executor/models/ultravox.py b/vllm/model_executor/models/ultravox.py index 9301422383696..33517b0ce2a44 100644 --- a/vllm/model_executor/models/ultravox.py +++ b/vllm/model_executor/models/ultravox.py @@ -20,6 +20,7 @@ from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.model_loader.loader import DefaultModelLoader +from vllm.model_executor.models.module_mapping import MultiModelKeys from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs, @@ -31,7 +32,7 @@ from vllm.sequence import IntermediateTensors from vllm.transformers_utils.configs.ultravox import UltravoxConfig -from .interfaces import SupportsMultiModal, SupportsPP +from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings, @@ -333,7 +334,20 @@ def forward( info=UltravoxProcessingInfo, dummy_inputs=UltravoxDummyInputsBuilder ) -class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP): +class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA): + + packed_modules_mapping = { + "qkv_proj": ["q_proj", "k_proj", "v_proj"], + "gate_up_proj": ["gate_proj", "up_proj"] + } + + # LoRA specific attributes + # TODO : Add LoRA to the audio tower and projector. + supported_lora_modules = [ + "qkv_proj", "o_proj", "gate_up_proj", "down_proj" + ] + embedding_modules = {} + embedding_padding_modules = [] hf_to_vllm_mapper = WeightsMapper( orig_to_new_prefix={"audio_tower.model.encoder.": "audio_tower."}) @@ -381,6 +395,16 @@ def sampler(self): return get_sampler() + def get_mm_mapping(self) -> MultiModelKeys: + """ + Get the module prefix in multimodal models + """ + return MultiModelKeys.from_string_field( + language_model="language_model.", + connector="multi_modal_projector.", + tower_model="audio_tower.", + ) + def _audio_features_to_embeddings( self, input_features: torch.Tensor) -> torch.Tensor: audio_input = input_features.to(self.audio_tower.dtype)