diff --git a/docs/source/serving/deploying_with_k8s.md b/docs/source/serving/deploying_with_k8s.md index d27db826cd006..81ffc3e3703ad 100644 --- a/docs/source/serving/deploying_with_k8s.md +++ b/docs/source/serving/deploying_with_k8s.md @@ -119,6 +119,79 @@ spec: periodSeconds: 5 ``` +- AMD ROCm GPU + +You can refer to the `deployment.yaml` below if using AMD ROCm GPU like MI300X. + +```yaml +apiVersion: apps/v1 +kind: Deployment +metadata: + name: mistral-7b + namespace: default + labels: + app: mistral-7b +spec: + replicas: 1 + selector: + matchLabels: + app: mistral-7b + template: + metadata: + labels: + app: mistral-7b + spec: + volumes: + # PVC + - name: cache-volume + persistentVolumeClaim: + claimName: mistral-7b + # vLLM needs to access the host's shared memory for tensor parallel inference. + - name: shm + emptyDir: + medium: Memory + sizeLimit: "8Gi" + hostNetwork: true + hostIPC: true + containers: + - name: mistral-7b + image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 + securityContext: + seccompProfile: + type: Unconfined + runAsGroup: 44 + capabilities: + add: + - SYS_PTRACE + command: ["/bin/sh", "-c"] + args: [ + "vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024" + ] + env: + - name: HUGGING_FACE_HUB_TOKEN + valueFrom: + secretKeyRef: + name: hf-token-secret + key: token + ports: + - containerPort: 8000 + resources: + limits: + cpu: "10" + memory: 20G + amd.com/gpu: "1" + requests: + cpu: "6" + memory: 6G + amd.com/gpu: "1" + volumeMounts: + - name: cache-volume + mountPath: /root/.cache/huggingface + - name: shm + mountPath: /dev/shm +``` +The full example is at https://github.com/ROCm/k8s-device-plugin/tree/master/example/vllm-serve. + 2. **Create a Kubernetes Service for vLLM** Next, create a Kubernetes Service file to expose the `mistral-7b` deployment: