diff --git a/docs/source/getting_started/amd-installation.md b/docs/source/getting_started/amd-installation.md index cefaa0c71787d..73f1889d84e35 100644 --- a/docs/source/getting_started/amd-installation.md +++ b/docs/source/getting_started/amd-installation.md @@ -8,7 +8,7 @@ vLLM supports AMD GPUs with ROCm 6.3. - OS: Linux - Python: 3.9 -- 3.12 -- GPU: MI200s (gfx90a), MI300 (gfx942), Radeon RX 7900 series (gfx1100) +- GPU: MI200s (gfx90a), MI300 (gfx942), Radeon Pro, Radeon RX 7900 series (gfx1100) - ROCm 6.3 Installation options: @@ -83,7 +83,7 @@ Where the `` is the location where the model is stored, for examp - [ROCm](https://rocm.docs.amd.com/en/latest/deploy/linux/index.html) - [PyTorch](https://pytorch.org/) -For installing PyTorch, you can start from a fresh docker image, e.g, `rocm/pytorch:rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.4.0`, `rocm/pytorch-nightly`. +For installing PyTorch, you can start from a fresh docker image, e.g, `rocm/pytorch:rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0`, `rocm/pytorch-nightly`. Alternatively, you can install PyTorch using PyTorch wheels. You can check PyTorch installation guide in PyTorch [Getting Started](https://pytorch.org/get-started/locally/) @@ -94,9 +94,9 @@ Install ROCm's Triton flash attention (the default triton-mlir branch) following ```console $ python3 -m pip install ninja cmake wheel pybind11 $ pip uninstall -y triton -$ git clone https://github.com/OpenAI/triton.git +$ git clone https://github.com/triton-lang/triton $ cd triton -$ git checkout e192dba +$ git checkout release/3.2.x $ cd python $ pip3 install . $ cd ../.. @@ -116,7 +116,6 @@ For example, for ROCm 6.3, suppose your gfx arch is `gfx90a`. To get your gfx ar ```console $ git clone https://github.com/ROCm/flash-attention.git $ cd flash-attention -$ git checkout 3cea2fb $ git submodule update --init $ GPU_ARCHS="gfx90a" python3 setup.py install $ cd ..